Solve for t
t=3x+13
Solve for x
x=\frac{t-13}{3}
Graph
Share
Copied to clipboard
8t-144=8\left(3x-5\right)
Use the distributive property to multiply 2 by 4t-72.
8t-144=24x-40
Use the distributive property to multiply 8 by 3x-5.
8t=24x-40+144
Add 144 to both sides.
8t=24x+104
Add -40 and 144 to get 104.
\frac{8t}{8}=\frac{24x+104}{8}
Divide both sides by 8.
t=\frac{24x+104}{8}
Dividing by 8 undoes the multiplication by 8.
t=3x+13
Divide 24x+104 by 8.
8t-144=8\left(3x-5\right)
Use the distributive property to multiply 2 by 4t-72.
8t-144=24x-40
Use the distributive property to multiply 8 by 3x-5.
24x-40=8t-144
Swap sides so that all variable terms are on the left hand side.
24x=8t-144+40
Add 40 to both sides.
24x=8t-104
Add -144 and 40 to get -104.
\frac{24x}{24}=\frac{8t-104}{24}
Divide both sides by 24.
x=\frac{8t-104}{24}
Dividing by 24 undoes the multiplication by 24.
x=\frac{t-13}{3}
Divide -104+8t by 24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}