Solve for y
y = \frac{7}{2} = 3\frac{1}{2} = 3.5
Graph
Share
Copied to clipboard
6y-4-4\left(2y-5\right)=9
Use the distributive property to multiply 2 by 3y-2.
6y-4-8y+20=9
Use the distributive property to multiply -4 by 2y-5.
-2y-4+20=9
Combine 6y and -8y to get -2y.
-2y+16=9
Add -4 and 20 to get 16.
-2y=9-16
Subtract 16 from both sides.
-2y=-7
Subtract 16 from 9 to get -7.
y=\frac{-7}{-2}
Divide both sides by -2.
y=\frac{7}{2}
Fraction \frac{-7}{-2} can be simplified to \frac{7}{2} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}