Solve for v
v=-\frac{3y-2}{4\left(3-2y\right)}
y\neq \frac{3}{2}
Solve for y
y=-\frac{2\left(6v-1\right)}{3-8v}
v\neq \frac{3}{8}
Graph
Share
Copied to clipboard
6y-4=8\left(2y-3\right)v
Use the distributive property to multiply 2 by 3y-2.
6y-4=\left(16y-24\right)v
Use the distributive property to multiply 8 by 2y-3.
6y-4=16yv-24v
Use the distributive property to multiply 16y-24 by v.
16yv-24v=6y-4
Swap sides so that all variable terms are on the left hand side.
\left(16y-24\right)v=6y-4
Combine all terms containing v.
\frac{\left(16y-24\right)v}{16y-24}=\frac{6y-4}{16y-24}
Divide both sides by 16y-24.
v=\frac{6y-4}{16y-24}
Dividing by 16y-24 undoes the multiplication by 16y-24.
v=\frac{3y-2}{4\left(2y-3\right)}
Divide 6y-4 by 16y-24.
6y-4=8\left(2y-3\right)v
Use the distributive property to multiply 2 by 3y-2.
6y-4=\left(16y-24\right)v
Use the distributive property to multiply 8 by 2y-3.
6y-4=16yv-24v
Use the distributive property to multiply 16y-24 by v.
6y-4-16yv=-24v
Subtract 16yv from both sides.
6y-16yv=-24v+4
Add 4 to both sides.
\left(6-16v\right)y=-24v+4
Combine all terms containing y.
\left(6-16v\right)y=4-24v
The equation is in standard form.
\frac{\left(6-16v\right)y}{6-16v}=\frac{4-24v}{6-16v}
Divide both sides by -16v+6.
y=\frac{4-24v}{6-16v}
Dividing by -16v+6 undoes the multiplication by -16v+6.
y=\frac{2\left(1-6v\right)}{3-8v}
Divide -24v+4 by -16v+6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}