Solve for x
x = -\frac{40}{3} = -13\frac{1}{3} \approx -13.333333333
Graph
Share
Copied to clipboard
6x-14-9\left(x+2\right)=8
Use the distributive property to multiply 2 by 3x-7.
6x-14-9x-18=8
Use the distributive property to multiply -9 by x+2.
-3x-14-18=8
Combine 6x and -9x to get -3x.
-3x-32=8
Subtract 18 from -14 to get -32.
-3x=8+32
Add 32 to both sides.
-3x=40
Add 8 and 32 to get 40.
x=\frac{40}{-3}
Divide both sides by -3.
x=-\frac{40}{3}
Fraction \frac{40}{-3} can be rewritten as -\frac{40}{3} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}