Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(3x-5\right)^{2}=-32
Subtracting 32 from itself leaves 0.
\frac{2\left(3x-5\right)^{2}}{2}=-\frac{32}{2}
Divide both sides by 2.
\left(3x-5\right)^{2}=-\frac{32}{2}
Dividing by 2 undoes the multiplication by 2.
\left(3x-5\right)^{2}=-16
Divide -32 by 2.
3x-5=4i 3x-5=-4i
Take the square root of both sides of the equation.
3x-5-\left(-5\right)=4i-\left(-5\right) 3x-5-\left(-5\right)=-4i-\left(-5\right)
Add 5 to both sides of the equation.
3x=4i-\left(-5\right) 3x=-4i-\left(-5\right)
Subtracting -5 from itself leaves 0.
3x=5+4i
Subtract -5 from 4i.
3x=5-4i
Subtract -5 from -4i.
\frac{3x}{3}=\frac{5+4i}{3} \frac{3x}{3}=\frac{5-4i}{3}
Divide both sides by 3.
x=\frac{5+4i}{3} x=\frac{5-4i}{3}
Dividing by 3 undoes the multiplication by 3.
x=\frac{5}{3}+\frac{4}{3}i
Divide 5+4i by 3.
x=\frac{5}{3}-\frac{4}{3}i
Divide 5-4i by 3.
x=\frac{5}{3}+\frac{4}{3}i x=\frac{5}{3}-\frac{4}{3}i
The equation is now solved.