Solve for x
x=\frac{-14y-1}{3}
Solve for y
y=\frac{-3x-1}{14}
Graph
Share
Copied to clipboard
6x-8y+5=3\left(2y+3x+2\right)
Use the distributive property to multiply 2 by 3x-4y.
6x-8y+5=6y+9x+6
Use the distributive property to multiply 3 by 2y+3x+2.
6x-8y+5-9x=6y+6
Subtract 9x from both sides.
-3x-8y+5=6y+6
Combine 6x and -9x to get -3x.
-3x+5=6y+6+8y
Add 8y to both sides.
-3x+5=14y+6
Combine 6y and 8y to get 14y.
-3x=14y+6-5
Subtract 5 from both sides.
-3x=14y+1
Subtract 5 from 6 to get 1.
\frac{-3x}{-3}=\frac{14y+1}{-3}
Divide both sides by -3.
x=\frac{14y+1}{-3}
Dividing by -3 undoes the multiplication by -3.
x=\frac{-14y-1}{3}
Divide 14y+1 by -3.
6x-8y+5=3\left(2y+3x+2\right)
Use the distributive property to multiply 2 by 3x-4y.
6x-8y+5=6y+9x+6
Use the distributive property to multiply 3 by 2y+3x+2.
6x-8y+5-6y=9x+6
Subtract 6y from both sides.
6x-14y+5=9x+6
Combine -8y and -6y to get -14y.
-14y+5=9x+6-6x
Subtract 6x from both sides.
-14y+5=3x+6
Combine 9x and -6x to get 3x.
-14y=3x+6-5
Subtract 5 from both sides.
-14y=3x+1
Subtract 5 from 6 to get 1.
\frac{-14y}{-14}=\frac{3x+1}{-14}
Divide both sides by -14.
y=\frac{3x+1}{-14}
Dividing by -14 undoes the multiplication by -14.
y=\frac{-3x-1}{14}
Divide 3x+1 by -14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}