Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x-8=7\left(11-2x\right)^{2}
Use the distributive property to multiply 2 by 3x-4.
6x-8=7\left(121-44x+4x^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(11-2x\right)^{2}.
6x-8=847-308x+28x^{2}
Use the distributive property to multiply 7 by 121-44x+4x^{2}.
6x-8-847=-308x+28x^{2}
Subtract 847 from both sides.
6x-855=-308x+28x^{2}
Subtract 847 from -8 to get -855.
6x-855+308x=28x^{2}
Add 308x to both sides.
314x-855=28x^{2}
Combine 6x and 308x to get 314x.
314x-855-28x^{2}=0
Subtract 28x^{2} from both sides.
-28x^{2}+314x-855=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-314±\sqrt{314^{2}-4\left(-28\right)\left(-855\right)}}{2\left(-28\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -28 for a, 314 for b, and -855 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-314±\sqrt{98596-4\left(-28\right)\left(-855\right)}}{2\left(-28\right)}
Square 314.
x=\frac{-314±\sqrt{98596+112\left(-855\right)}}{2\left(-28\right)}
Multiply -4 times -28.
x=\frac{-314±\sqrt{98596-95760}}{2\left(-28\right)}
Multiply 112 times -855.
x=\frac{-314±\sqrt{2836}}{2\left(-28\right)}
Add 98596 to -95760.
x=\frac{-314±2\sqrt{709}}{2\left(-28\right)}
Take the square root of 2836.
x=\frac{-314±2\sqrt{709}}{-56}
Multiply 2 times -28.
x=\frac{2\sqrt{709}-314}{-56}
Now solve the equation x=\frac{-314±2\sqrt{709}}{-56} when ± is plus. Add -314 to 2\sqrt{709}.
x=\frac{157-\sqrt{709}}{28}
Divide -314+2\sqrt{709} by -56.
x=\frac{-2\sqrt{709}-314}{-56}
Now solve the equation x=\frac{-314±2\sqrt{709}}{-56} when ± is minus. Subtract 2\sqrt{709} from -314.
x=\frac{\sqrt{709}+157}{28}
Divide -314-2\sqrt{709} by -56.
x=\frac{157-\sqrt{709}}{28} x=\frac{\sqrt{709}+157}{28}
The equation is now solved.
6x-8=7\left(11-2x\right)^{2}
Use the distributive property to multiply 2 by 3x-4.
6x-8=7\left(121-44x+4x^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(11-2x\right)^{2}.
6x-8=847-308x+28x^{2}
Use the distributive property to multiply 7 by 121-44x+4x^{2}.
6x-8+308x=847+28x^{2}
Add 308x to both sides.
314x-8=847+28x^{2}
Combine 6x and 308x to get 314x.
314x-8-28x^{2}=847
Subtract 28x^{2} from both sides.
314x-28x^{2}=847+8
Add 8 to both sides.
314x-28x^{2}=855
Add 847 and 8 to get 855.
-28x^{2}+314x=855
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-28x^{2}+314x}{-28}=\frac{855}{-28}
Divide both sides by -28.
x^{2}+\frac{314}{-28}x=\frac{855}{-28}
Dividing by -28 undoes the multiplication by -28.
x^{2}-\frac{157}{14}x=\frac{855}{-28}
Reduce the fraction \frac{314}{-28} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{157}{14}x=-\frac{855}{28}
Divide 855 by -28.
x^{2}-\frac{157}{14}x+\left(-\frac{157}{28}\right)^{2}=-\frac{855}{28}+\left(-\frac{157}{28}\right)^{2}
Divide -\frac{157}{14}, the coefficient of the x term, by 2 to get -\frac{157}{28}. Then add the square of -\frac{157}{28} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{157}{14}x+\frac{24649}{784}=-\frac{855}{28}+\frac{24649}{784}
Square -\frac{157}{28} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{157}{14}x+\frac{24649}{784}=\frac{709}{784}
Add -\frac{855}{28} to \frac{24649}{784} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{157}{28}\right)^{2}=\frac{709}{784}
Factor x^{2}-\frac{157}{14}x+\frac{24649}{784}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{157}{28}\right)^{2}}=\sqrt{\frac{709}{784}}
Take the square root of both sides of the equation.
x-\frac{157}{28}=\frac{\sqrt{709}}{28} x-\frac{157}{28}=-\frac{\sqrt{709}}{28}
Simplify.
x=\frac{\sqrt{709}+157}{28} x=\frac{157-\sqrt{709}}{28}
Add \frac{157}{28} to both sides of the equation.