Solve for x
x = \frac{13}{12} = 1\frac{1}{12} \approx 1.083333333
Graph
Share
Copied to clipboard
6x-4-\frac{2}{4}=\frac{6}{3}
Use the distributive property to multiply 2 by 3x-2.
6x-4-\frac{1}{2}=\frac{6}{3}
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
6x-\frac{8}{2}-\frac{1}{2}=\frac{6}{3}
Convert -4 to fraction -\frac{8}{2}.
6x+\frac{-8-1}{2}=\frac{6}{3}
Since -\frac{8}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
6x-\frac{9}{2}=\frac{6}{3}
Subtract 1 from -8 to get -9.
6x-\frac{9}{2}=2
Divide 6 by 3 to get 2.
6x=2+\frac{9}{2}
Add \frac{9}{2} to both sides.
6x=\frac{4}{2}+\frac{9}{2}
Convert 2 to fraction \frac{4}{2}.
6x=\frac{4+9}{2}
Since \frac{4}{2} and \frac{9}{2} have the same denominator, add them by adding their numerators.
6x=\frac{13}{2}
Add 4 and 9 to get 13.
x=\frac{\frac{13}{2}}{6}
Divide both sides by 6.
x=\frac{13}{2\times 6}
Express \frac{\frac{13}{2}}{6} as a single fraction.
x=\frac{13}{12}
Multiply 2 and 6 to get 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}