Solve for m
m = \frac{33}{17} = 1\frac{16}{17} \approx 1.941176471
Share
Copied to clipboard
6\left(2-m\right)-18m+24=2-m+1-6m
Multiply both sides of the equation by 3.
12-6m-18m+24=2-m+1-6m
Use the distributive property to multiply 6 by 2-m.
12-24m+24=2-m+1-6m
Combine -6m and -18m to get -24m.
36-24m=2-m+1-6m
Add 12 and 24 to get 36.
36-24m=3-m-6m
Add 2 and 1 to get 3.
36-24m=3-7m
Combine -m and -6m to get -7m.
36-24m+7m=3
Add 7m to both sides.
36-17m=3
Combine -24m and 7m to get -17m.
-17m=3-36
Subtract 36 from both sides.
-17m=-33
Subtract 36 from 3 to get -33.
m=\frac{-33}{-17}
Divide both sides by -17.
m=\frac{33}{17}
Fraction \frac{-33}{-17} can be simplified to \frac{33}{17} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}