Evaluate
161-x^{2}
Differentiate w.r.t. x
-2x
Graph
Share
Copied to clipboard
2^{7}+2\times 2^{4}-x^{2}+1
To multiply powers of the same base, add their exponents. Add 1 and 6 to get 7.
2^{7}+2^{5}-x^{2}+1
To multiply powers of the same base, add their exponents. Add 1 and 4 to get 5.
128+2^{5}-x^{2}+1
Calculate 2 to the power of 7 and get 128.
128+32-x^{2}+1
Calculate 2 to the power of 5 and get 32.
160-x^{2}+1
Add 128 and 32 to get 160.
161-x^{2}
Add 160 and 1 to get 161.
\frac{\mathrm{d}}{\mathrm{d}x}(2^{7}+2\times 2^{4}-x^{2}+1)
To multiply powers of the same base, add their exponents. Add 1 and 6 to get 7.
\frac{\mathrm{d}}{\mathrm{d}x}(2^{7}+2^{5}-x^{2}+1)
To multiply powers of the same base, add their exponents. Add 1 and 4 to get 5.
\frac{\mathrm{d}}{\mathrm{d}x}(128+2^{5}-x^{2}+1)
Calculate 2 to the power of 7 and get 128.
\frac{\mathrm{d}}{\mathrm{d}x}(128+32-x^{2}+1)
Calculate 2 to the power of 5 and get 32.
\frac{\mathrm{d}}{\mathrm{d}x}(160-x^{2}+1)
Add 128 and 32 to get 160.
\frac{\mathrm{d}}{\mathrm{d}x}(161-x^{2})
Add 160 and 1 to get 161.
2\left(-1\right)x^{2-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
-2x^{2-1}
Multiply 2 times -1.
-2x^{1}
Subtract 1 from 2.
-2x
For any term t, t^{1}=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}