Solve for λ
\lambda =\frac{\sqrt{201}-5}{4}\approx 2.29436172
\lambda =\frac{-\sqrt{201}-5}{4}\approx -4.79436172
Share
Copied to clipboard
4\left(12-\frac{2\lambda +1}{2}\right)=4\lambda +4\lambda ^{2}+2\lambda +2
Multiply both sides of the equation by 2.
48+4\left(-\frac{2\lambda +1}{2}\right)=4\lambda +4\lambda ^{2}+2\lambda +2
Use the distributive property to multiply 4 by 12-\frac{2\lambda +1}{2}.
48-2\left(2\lambda +1\right)=4\lambda +4\lambda ^{2}+2\lambda +2
Cancel out 2, the greatest common factor in 4 and 2.
48-4\lambda -2=4\lambda +4\lambda ^{2}+2\lambda +2
Use the distributive property to multiply -2 by 2\lambda +1.
46-4\lambda =4\lambda +4\lambda ^{2}+2\lambda +2
Subtract 2 from 48 to get 46.
46-4\lambda =6\lambda +4\lambda ^{2}+2
Combine 4\lambda and 2\lambda to get 6\lambda .
46-4\lambda -6\lambda =4\lambda ^{2}+2
Subtract 6\lambda from both sides.
46-10\lambda =4\lambda ^{2}+2
Combine -4\lambda and -6\lambda to get -10\lambda .
46-10\lambda -4\lambda ^{2}=2
Subtract 4\lambda ^{2} from both sides.
46-10\lambda -4\lambda ^{2}-2=0
Subtract 2 from both sides.
44-10\lambda -4\lambda ^{2}=0
Subtract 2 from 46 to get 44.
-4\lambda ^{2}-10\lambda +44=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\lambda =\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\left(-4\right)\times 44}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, -10 for b, and 44 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
\lambda =\frac{-\left(-10\right)±\sqrt{100-4\left(-4\right)\times 44}}{2\left(-4\right)}
Square -10.
\lambda =\frac{-\left(-10\right)±\sqrt{100+16\times 44}}{2\left(-4\right)}
Multiply -4 times -4.
\lambda =\frac{-\left(-10\right)±\sqrt{100+704}}{2\left(-4\right)}
Multiply 16 times 44.
\lambda =\frac{-\left(-10\right)±\sqrt{804}}{2\left(-4\right)}
Add 100 to 704.
\lambda =\frac{-\left(-10\right)±2\sqrt{201}}{2\left(-4\right)}
Take the square root of 804.
\lambda =\frac{10±2\sqrt{201}}{2\left(-4\right)}
The opposite of -10 is 10.
\lambda =\frac{10±2\sqrt{201}}{-8}
Multiply 2 times -4.
\lambda =\frac{2\sqrt{201}+10}{-8}
Now solve the equation \lambda =\frac{10±2\sqrt{201}}{-8} when ± is plus. Add 10 to 2\sqrt{201}.
\lambda =\frac{-\sqrt{201}-5}{4}
Divide 10+2\sqrt{201} by -8.
\lambda =\frac{10-2\sqrt{201}}{-8}
Now solve the equation \lambda =\frac{10±2\sqrt{201}}{-8} when ± is minus. Subtract 2\sqrt{201} from 10.
\lambda =\frac{\sqrt{201}-5}{4}
Divide 10-2\sqrt{201} by -8.
\lambda =\frac{-\sqrt{201}-5}{4} \lambda =\frac{\sqrt{201}-5}{4}
The equation is now solved.
4\left(12-\frac{2\lambda +1}{2}\right)=4\lambda +4\lambda ^{2}+2\lambda +2
Multiply both sides of the equation by 2.
48+4\left(-\frac{2\lambda +1}{2}\right)=4\lambda +4\lambda ^{2}+2\lambda +2
Use the distributive property to multiply 4 by 12-\frac{2\lambda +1}{2}.
48-2\left(2\lambda +1\right)=4\lambda +4\lambda ^{2}+2\lambda +2
Cancel out 2, the greatest common factor in 4 and 2.
48-4\lambda -2=4\lambda +4\lambda ^{2}+2\lambda +2
Use the distributive property to multiply -2 by 2\lambda +1.
46-4\lambda =4\lambda +4\lambda ^{2}+2\lambda +2
Subtract 2 from 48 to get 46.
46-4\lambda =6\lambda +4\lambda ^{2}+2
Combine 4\lambda and 2\lambda to get 6\lambda .
46-4\lambda -6\lambda =4\lambda ^{2}+2
Subtract 6\lambda from both sides.
46-10\lambda =4\lambda ^{2}+2
Combine -4\lambda and -6\lambda to get -10\lambda .
46-10\lambda -4\lambda ^{2}=2
Subtract 4\lambda ^{2} from both sides.
-10\lambda -4\lambda ^{2}=2-46
Subtract 46 from both sides.
-10\lambda -4\lambda ^{2}=-44
Subtract 46 from 2 to get -44.
-4\lambda ^{2}-10\lambda =-44
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-4\lambda ^{2}-10\lambda }{-4}=-\frac{44}{-4}
Divide both sides by -4.
\lambda ^{2}+\left(-\frac{10}{-4}\right)\lambda =-\frac{44}{-4}
Dividing by -4 undoes the multiplication by -4.
\lambda ^{2}+\frac{5}{2}\lambda =-\frac{44}{-4}
Reduce the fraction \frac{-10}{-4} to lowest terms by extracting and canceling out 2.
\lambda ^{2}+\frac{5}{2}\lambda =11
Divide -44 by -4.
\lambda ^{2}+\frac{5}{2}\lambda +\left(\frac{5}{4}\right)^{2}=11+\left(\frac{5}{4}\right)^{2}
Divide \frac{5}{2}, the coefficient of the x term, by 2 to get \frac{5}{4}. Then add the square of \frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
\lambda ^{2}+\frac{5}{2}\lambda +\frac{25}{16}=11+\frac{25}{16}
Square \frac{5}{4} by squaring both the numerator and the denominator of the fraction.
\lambda ^{2}+\frac{5}{2}\lambda +\frac{25}{16}=\frac{201}{16}
Add 11 to \frac{25}{16}.
\left(\lambda +\frac{5}{4}\right)^{2}=\frac{201}{16}
Factor \lambda ^{2}+\frac{5}{2}\lambda +\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(\lambda +\frac{5}{4}\right)^{2}}=\sqrt{\frac{201}{16}}
Take the square root of both sides of the equation.
\lambda +\frac{5}{4}=\frac{\sqrt{201}}{4} \lambda +\frac{5}{4}=-\frac{\sqrt{201}}{4}
Simplify.
\lambda =\frac{\sqrt{201}-5}{4} \lambda =\frac{-\sqrt{201}-5}{4}
Subtract \frac{5}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}