Solve for x
x=2\sqrt{3}-1\approx 2.464101615
x=-2\sqrt{3}-1\approx -4.464101615
Graph
Share
Copied to clipboard
\frac{2\left(x+1\right)^{2}}{2}=\frac{24}{2}
Divide both sides by 2.
\left(x+1\right)^{2}=\frac{24}{2}
Dividing by 2 undoes the multiplication by 2.
\left(x+1\right)^{2}=12
Divide 24 by 2.
x+1=2\sqrt{3} x+1=-2\sqrt{3}
Take the square root of both sides of the equation.
x+1-1=2\sqrt{3}-1 x+1-1=-2\sqrt{3}-1
Subtract 1 from both sides of the equation.
x=2\sqrt{3}-1 x=-2\sqrt{3}-1
Subtracting 1 from itself leaves 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}