Solve for a
a<-9
Share
Copied to clipboard
-198+136a>3\left(-6+52a\right)
Use the distributive property to multiply 2 by -99+68a.
-198+136a>-18+156a
Use the distributive property to multiply 3 by -6+52a.
-198+136a-156a>-18
Subtract 156a from both sides.
-198-20a>-18
Combine 136a and -156a to get -20a.
-20a>-18+198
Add 198 to both sides.
-20a>180
Add -18 and 198 to get 180.
a<\frac{180}{-20}
Divide both sides by -20. Since -20 is negative, the inequality direction is changed.
a<-9
Divide 180 by -20 to get -9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}