Verify
false
Share
Copied to clipboard
-18+3\left(-\frac{-12}{7}\right)=-6
Multiply 2 and -9 to get -18.
-18+3\left(-\left(-\frac{12}{7}\right)\right)=-6
Fraction \frac{-12}{7} can be rewritten as -\frac{12}{7} by extracting the negative sign.
-18+3\times \frac{12}{7}=-6
The opposite of -\frac{12}{7} is \frac{12}{7}.
-18+\frac{3\times 12}{7}=-6
Express 3\times \frac{12}{7} as a single fraction.
-18+\frac{36}{7}=-6
Multiply 3 and 12 to get 36.
-\frac{126}{7}+\frac{36}{7}=-6
Convert -18 to fraction -\frac{126}{7}.
\frac{-126+36}{7}=-6
Since -\frac{126}{7} and \frac{36}{7} have the same denominator, add them by adding their numerators.
-\frac{90}{7}=-6
Add -126 and 36 to get -90.
-\frac{90}{7}=-\frac{42}{7}
Convert -6 to fraction -\frac{42}{7}.
\text{false}
Compare -\frac{90}{7} and -\frac{42}{7}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}