Solve for m
m = \frac{22}{3} = 7\frac{1}{3} \approx 7.333333333
m=-4
Share
Copied to clipboard
-\frac{5}{2}m-10=12-\frac{3}{4}m^{2}
Cancel out 2 on both sides.
-\frac{5}{2}m-10-12=-\frac{3}{4}m^{2}
Subtract 12 from both sides.
-\frac{5}{2}m-22=-\frac{3}{4}m^{2}
Subtract 12 from -10 to get -22.
-\frac{5}{2}m-22+\frac{3}{4}m^{2}=0
Add \frac{3}{4}m^{2} to both sides.
\frac{3}{4}m^{2}-\frac{5}{2}m-22=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
m=\frac{-\left(-\frac{5}{2}\right)±\sqrt{\left(-\frac{5}{2}\right)^{2}-4\times \frac{3}{4}\left(-22\right)}}{2\times \frac{3}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{3}{4} for a, -\frac{5}{2} for b, and -22 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\left(-\frac{5}{2}\right)±\sqrt{\frac{25}{4}-4\times \frac{3}{4}\left(-22\right)}}{2\times \frac{3}{4}}
Square -\frac{5}{2} by squaring both the numerator and the denominator of the fraction.
m=\frac{-\left(-\frac{5}{2}\right)±\sqrt{\frac{25}{4}-3\left(-22\right)}}{2\times \frac{3}{4}}
Multiply -4 times \frac{3}{4}.
m=\frac{-\left(-\frac{5}{2}\right)±\sqrt{\frac{25}{4}+66}}{2\times \frac{3}{4}}
Multiply -3 times -22.
m=\frac{-\left(-\frac{5}{2}\right)±\sqrt{\frac{289}{4}}}{2\times \frac{3}{4}}
Add \frac{25}{4} to 66.
m=\frac{-\left(-\frac{5}{2}\right)±\frac{17}{2}}{2\times \frac{3}{4}}
Take the square root of \frac{289}{4}.
m=\frac{\frac{5}{2}±\frac{17}{2}}{2\times \frac{3}{4}}
The opposite of -\frac{5}{2} is \frac{5}{2}.
m=\frac{\frac{5}{2}±\frac{17}{2}}{\frac{3}{2}}
Multiply 2 times \frac{3}{4}.
m=\frac{11}{\frac{3}{2}}
Now solve the equation m=\frac{\frac{5}{2}±\frac{17}{2}}{\frac{3}{2}} when ± is plus. Add \frac{5}{2} to \frac{17}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
m=\frac{22}{3}
Divide 11 by \frac{3}{2} by multiplying 11 by the reciprocal of \frac{3}{2}.
m=-\frac{6}{\frac{3}{2}}
Now solve the equation m=\frac{\frac{5}{2}±\frac{17}{2}}{\frac{3}{2}} when ± is minus. Subtract \frac{17}{2} from \frac{5}{2} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
m=-4
Divide -6 by \frac{3}{2} by multiplying -6 by the reciprocal of \frac{3}{2}.
m=\frac{22}{3} m=-4
The equation is now solved.
-\frac{5}{2}m-10=12-\frac{3}{4}m^{2}
Cancel out 2 on both sides.
-\frac{5}{2}m-10+\frac{3}{4}m^{2}=12
Add \frac{3}{4}m^{2} to both sides.
-\frac{5}{2}m+\frac{3}{4}m^{2}=12+10
Add 10 to both sides.
-\frac{5}{2}m+\frac{3}{4}m^{2}=22
Add 12 and 10 to get 22.
\frac{3}{4}m^{2}-\frac{5}{2}m=22
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{3}{4}m^{2}-\frac{5}{2}m}{\frac{3}{4}}=\frac{22}{\frac{3}{4}}
Divide both sides of the equation by \frac{3}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
m^{2}+\left(-\frac{\frac{5}{2}}{\frac{3}{4}}\right)m=\frac{22}{\frac{3}{4}}
Dividing by \frac{3}{4} undoes the multiplication by \frac{3}{4}.
m^{2}-\frac{10}{3}m=\frac{22}{\frac{3}{4}}
Divide -\frac{5}{2} by \frac{3}{4} by multiplying -\frac{5}{2} by the reciprocal of \frac{3}{4}.
m^{2}-\frac{10}{3}m=\frac{88}{3}
Divide 22 by \frac{3}{4} by multiplying 22 by the reciprocal of \frac{3}{4}.
m^{2}-\frac{10}{3}m+\left(-\frac{5}{3}\right)^{2}=\frac{88}{3}+\left(-\frac{5}{3}\right)^{2}
Divide -\frac{10}{3}, the coefficient of the x term, by 2 to get -\frac{5}{3}. Then add the square of -\frac{5}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-\frac{10}{3}m+\frac{25}{9}=\frac{88}{3}+\frac{25}{9}
Square -\frac{5}{3} by squaring both the numerator and the denominator of the fraction.
m^{2}-\frac{10}{3}m+\frac{25}{9}=\frac{289}{9}
Add \frac{88}{3} to \frac{25}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(m-\frac{5}{3}\right)^{2}=\frac{289}{9}
Factor m^{2}-\frac{10}{3}m+\frac{25}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{5}{3}\right)^{2}}=\sqrt{\frac{289}{9}}
Take the square root of both sides of the equation.
m-\frac{5}{3}=\frac{17}{3} m-\frac{5}{3}=-\frac{17}{3}
Simplify.
m=\frac{22}{3} m=-4
Add \frac{5}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}