Solve for x
x=16
Graph
Share
Copied to clipboard
8\left(\frac{x}{4}+4\right)-16\left(\frac{x}{2}+2\right)=32-8x
Multiply both sides of the equation by 4, the least common multiple of 4,2.
8\times \frac{x}{4}+32-16\left(\frac{x}{2}+2\right)=32-8x
Use the distributive property to multiply 8 by \frac{x}{4}+4.
2x+32-16\left(\frac{x}{2}+2\right)=32-8x
Cancel out 4, the greatest common factor in 8 and 4.
2x+32-16\left(\frac{x}{2}+2\right)+8x=32
Add 8x to both sides.
2\left(2x+32-16\left(\frac{x}{2}+2\right)\right)+16x=64
Multiply both sides of the equation by 2.
4\left(2x+32-16\left(\frac{x}{2}+2\right)\right)+32x=128
Multiply both sides of the equation by 2.
4\left(2x+32-16\times \frac{x}{2}-32\right)+32x=128
Use the distributive property to multiply -16 by \frac{x}{2}+2.
4\left(2x+32-8x-32\right)+32x=128
Cancel out 2, the greatest common factor in 16 and 2.
4\left(-6x+32-32\right)+32x=128
Combine 2x and -8x to get -6x.
4\left(-6\right)x+32x=128
Subtract 32 from 32 to get 0.
-24x+32x=128
Multiply 4 and -6 to get -24.
8x=128
Combine -24x and 32x to get 8x.
x=\frac{128}{8}
Divide both sides by 8.
x=16
Divide 128 by 8 to get 16.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}