Solve for x
x=\frac{\sqrt{101}-11}{5}\approx -0.190024876
x=\frac{-\sqrt{101}-11}{5}\approx -4.209975124
Graph
Share
Copied to clipboard
20\left(\frac{x}{2}+2\right)\left(x-1\right)+16=5x^{2}+2\left(4x+1\right)-30
Multiply both sides of the equation by 10, the least common multiple of 2,5.
\left(20\times \frac{x}{2}+40\right)\left(x-1\right)+16=5x^{2}+2\left(4x+1\right)-30
Use the distributive property to multiply 20 by \frac{x}{2}+2.
\left(10x+40\right)\left(x-1\right)+16=5x^{2}+2\left(4x+1\right)-30
Cancel out 2, the greatest common factor in 20 and 2.
10x^{2}+30x-40+16=5x^{2}+2\left(4x+1\right)-30
Use the distributive property to multiply 10x+40 by x-1 and combine like terms.
10x^{2}+30x-24=5x^{2}+2\left(4x+1\right)-30
Add -40 and 16 to get -24.
10x^{2}+30x-24=5x^{2}+8x+2-30
Use the distributive property to multiply 2 by 4x+1.
10x^{2}+30x-24=5x^{2}+8x-28
Subtract 30 from 2 to get -28.
10x^{2}+30x-24-5x^{2}=8x-28
Subtract 5x^{2} from both sides.
5x^{2}+30x-24=8x-28
Combine 10x^{2} and -5x^{2} to get 5x^{2}.
5x^{2}+30x-24-8x=-28
Subtract 8x from both sides.
5x^{2}+22x-24=-28
Combine 30x and -8x to get 22x.
5x^{2}+22x-24+28=0
Add 28 to both sides.
5x^{2}+22x+4=0
Add -24 and 28 to get 4.
x=\frac{-22±\sqrt{22^{2}-4\times 5\times 4}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 22 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-22±\sqrt{484-4\times 5\times 4}}{2\times 5}
Square 22.
x=\frac{-22±\sqrt{484-20\times 4}}{2\times 5}
Multiply -4 times 5.
x=\frac{-22±\sqrt{484-80}}{2\times 5}
Multiply -20 times 4.
x=\frac{-22±\sqrt{404}}{2\times 5}
Add 484 to -80.
x=\frac{-22±2\sqrt{101}}{2\times 5}
Take the square root of 404.
x=\frac{-22±2\sqrt{101}}{10}
Multiply 2 times 5.
x=\frac{2\sqrt{101}-22}{10}
Now solve the equation x=\frac{-22±2\sqrt{101}}{10} when ± is plus. Add -22 to 2\sqrt{101}.
x=\frac{\sqrt{101}-11}{5}
Divide -22+2\sqrt{101} by 10.
x=\frac{-2\sqrt{101}-22}{10}
Now solve the equation x=\frac{-22±2\sqrt{101}}{10} when ± is minus. Subtract 2\sqrt{101} from -22.
x=\frac{-\sqrt{101}-11}{5}
Divide -22-2\sqrt{101} by 10.
x=\frac{\sqrt{101}-11}{5} x=\frac{-\sqrt{101}-11}{5}
The equation is now solved.
20\left(\frac{x}{2}+2\right)\left(x-1\right)+16=5x^{2}+2\left(4x+1\right)-30
Multiply both sides of the equation by 10, the least common multiple of 2,5.
\left(20\times \frac{x}{2}+40\right)\left(x-1\right)+16=5x^{2}+2\left(4x+1\right)-30
Use the distributive property to multiply 20 by \frac{x}{2}+2.
\left(10x+40\right)\left(x-1\right)+16=5x^{2}+2\left(4x+1\right)-30
Cancel out 2, the greatest common factor in 20 and 2.
10x^{2}+30x-40+16=5x^{2}+2\left(4x+1\right)-30
Use the distributive property to multiply 10x+40 by x-1 and combine like terms.
10x^{2}+30x-24=5x^{2}+2\left(4x+1\right)-30
Add -40 and 16 to get -24.
10x^{2}+30x-24=5x^{2}+8x+2-30
Use the distributive property to multiply 2 by 4x+1.
10x^{2}+30x-24=5x^{2}+8x-28
Subtract 30 from 2 to get -28.
10x^{2}+30x-24-5x^{2}=8x-28
Subtract 5x^{2} from both sides.
5x^{2}+30x-24=8x-28
Combine 10x^{2} and -5x^{2} to get 5x^{2}.
5x^{2}+30x-24-8x=-28
Subtract 8x from both sides.
5x^{2}+22x-24=-28
Combine 30x and -8x to get 22x.
5x^{2}+22x=-28+24
Add 24 to both sides.
5x^{2}+22x=-4
Add -28 and 24 to get -4.
\frac{5x^{2}+22x}{5}=-\frac{4}{5}
Divide both sides by 5.
x^{2}+\frac{22}{5}x=-\frac{4}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+\frac{22}{5}x+\left(\frac{11}{5}\right)^{2}=-\frac{4}{5}+\left(\frac{11}{5}\right)^{2}
Divide \frac{22}{5}, the coefficient of the x term, by 2 to get \frac{11}{5}. Then add the square of \frac{11}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{22}{5}x+\frac{121}{25}=-\frac{4}{5}+\frac{121}{25}
Square \frac{11}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{22}{5}x+\frac{121}{25}=\frac{101}{25}
Add -\frac{4}{5} to \frac{121}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{11}{5}\right)^{2}=\frac{101}{25}
Factor x^{2}+\frac{22}{5}x+\frac{121}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{5}\right)^{2}}=\sqrt{\frac{101}{25}}
Take the square root of both sides of the equation.
x+\frac{11}{5}=\frac{\sqrt{101}}{5} x+\frac{11}{5}=-\frac{\sqrt{101}}{5}
Simplify.
x=\frac{\sqrt{101}-11}{5} x=\frac{-\sqrt{101}-11}{5}
Subtract \frac{11}{5} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}