Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

20\left(\frac{x}{2}+2\right)\left(x-1\right)+16=5x^{2}+2\left(4x+1\right)-30
Multiply both sides of the equation by 10, the least common multiple of 2,5.
\left(20\times \frac{x}{2}+40\right)\left(x-1\right)+16=5x^{2}+2\left(4x+1\right)-30
Use the distributive property to multiply 20 by \frac{x}{2}+2.
\left(10x+40\right)\left(x-1\right)+16=5x^{2}+2\left(4x+1\right)-30
Cancel out 2, the greatest common factor in 20 and 2.
10x^{2}+30x-40+16=5x^{2}+2\left(4x+1\right)-30
Use the distributive property to multiply 10x+40 by x-1 and combine like terms.
10x^{2}+30x-24=5x^{2}+2\left(4x+1\right)-30
Add -40 and 16 to get -24.
10x^{2}+30x-24=5x^{2}+8x+2-30
Use the distributive property to multiply 2 by 4x+1.
10x^{2}+30x-24=5x^{2}+8x-28
Subtract 30 from 2 to get -28.
10x^{2}+30x-24-5x^{2}=8x-28
Subtract 5x^{2} from both sides.
5x^{2}+30x-24=8x-28
Combine 10x^{2} and -5x^{2} to get 5x^{2}.
5x^{2}+30x-24-8x=-28
Subtract 8x from both sides.
5x^{2}+22x-24=-28
Combine 30x and -8x to get 22x.
5x^{2}+22x-24+28=0
Add 28 to both sides.
5x^{2}+22x+4=0
Add -24 and 28 to get 4.
x=\frac{-22±\sqrt{22^{2}-4\times 5\times 4}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 22 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-22±\sqrt{484-4\times 5\times 4}}{2\times 5}
Square 22.
x=\frac{-22±\sqrt{484-20\times 4}}{2\times 5}
Multiply -4 times 5.
x=\frac{-22±\sqrt{484-80}}{2\times 5}
Multiply -20 times 4.
x=\frac{-22±\sqrt{404}}{2\times 5}
Add 484 to -80.
x=\frac{-22±2\sqrt{101}}{2\times 5}
Take the square root of 404.
x=\frac{-22±2\sqrt{101}}{10}
Multiply 2 times 5.
x=\frac{2\sqrt{101}-22}{10}
Now solve the equation x=\frac{-22±2\sqrt{101}}{10} when ± is plus. Add -22 to 2\sqrt{101}.
x=\frac{\sqrt{101}-11}{5}
Divide -22+2\sqrt{101} by 10.
x=\frac{-2\sqrt{101}-22}{10}
Now solve the equation x=\frac{-22±2\sqrt{101}}{10} when ± is minus. Subtract 2\sqrt{101} from -22.
x=\frac{-\sqrt{101}-11}{5}
Divide -22-2\sqrt{101} by 10.
x=\frac{\sqrt{101}-11}{5} x=\frac{-\sqrt{101}-11}{5}
The equation is now solved.
20\left(\frac{x}{2}+2\right)\left(x-1\right)+16=5x^{2}+2\left(4x+1\right)-30
Multiply both sides of the equation by 10, the least common multiple of 2,5.
\left(20\times \frac{x}{2}+40\right)\left(x-1\right)+16=5x^{2}+2\left(4x+1\right)-30
Use the distributive property to multiply 20 by \frac{x}{2}+2.
\left(10x+40\right)\left(x-1\right)+16=5x^{2}+2\left(4x+1\right)-30
Cancel out 2, the greatest common factor in 20 and 2.
10x^{2}+30x-40+16=5x^{2}+2\left(4x+1\right)-30
Use the distributive property to multiply 10x+40 by x-1 and combine like terms.
10x^{2}+30x-24=5x^{2}+2\left(4x+1\right)-30
Add -40 and 16 to get -24.
10x^{2}+30x-24=5x^{2}+8x+2-30
Use the distributive property to multiply 2 by 4x+1.
10x^{2}+30x-24=5x^{2}+8x-28
Subtract 30 from 2 to get -28.
10x^{2}+30x-24-5x^{2}=8x-28
Subtract 5x^{2} from both sides.
5x^{2}+30x-24=8x-28
Combine 10x^{2} and -5x^{2} to get 5x^{2}.
5x^{2}+30x-24-8x=-28
Subtract 8x from both sides.
5x^{2}+22x-24=-28
Combine 30x and -8x to get 22x.
5x^{2}+22x=-28+24
Add 24 to both sides.
5x^{2}+22x=-4
Add -28 and 24 to get -4.
\frac{5x^{2}+22x}{5}=-\frac{4}{5}
Divide both sides by 5.
x^{2}+\frac{22}{5}x=-\frac{4}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}+\frac{22}{5}x+\left(\frac{11}{5}\right)^{2}=-\frac{4}{5}+\left(\frac{11}{5}\right)^{2}
Divide \frac{22}{5}, the coefficient of the x term, by 2 to get \frac{11}{5}. Then add the square of \frac{11}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{22}{5}x+\frac{121}{25}=-\frac{4}{5}+\frac{121}{25}
Square \frac{11}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{22}{5}x+\frac{121}{25}=\frac{101}{25}
Add -\frac{4}{5} to \frac{121}{25} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{11}{5}\right)^{2}=\frac{101}{25}
Factor x^{2}+\frac{22}{5}x+\frac{121}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{5}\right)^{2}}=\sqrt{\frac{101}{25}}
Take the square root of both sides of the equation.
x+\frac{11}{5}=\frac{\sqrt{101}}{5} x+\frac{11}{5}=-\frac{\sqrt{101}}{5}
Simplify.
x=\frac{\sqrt{101}-11}{5} x=\frac{-\sqrt{101}-11}{5}
Subtract \frac{11}{5} from both sides of the equation.