Solve for x
x = \frac{165}{8} = 20\frac{5}{8} = 20.625
Graph
Share
Copied to clipboard
240\left(\frac{9}{8}-\frac{x}{10}\right)+40x=600
Multiply both sides of the equation by 120, the least common multiple of 8,10,3.
240\left(\frac{9\times 5}{40}-\frac{4x}{40}\right)+40x=600
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 8 and 10 is 40. Multiply \frac{9}{8} times \frac{5}{5}. Multiply \frac{x}{10} times \frac{4}{4}.
240\times \frac{9\times 5-4x}{40}+40x=600
Since \frac{9\times 5}{40} and \frac{4x}{40} have the same denominator, subtract them by subtracting their numerators.
240\times \frac{45-4x}{40}+40x=600
Do the multiplications in 9\times 5-4x.
6\left(45-4x\right)+40x=600
Cancel out 40, the greatest common factor in 240 and 40.
270-24x+40x=600
Use the distributive property to multiply 6 by 45-4x.
270+16x=600
Combine -24x and 40x to get 16x.
16x=600-270
Subtract 270 from both sides.
16x=330
Subtract 270 from 600 to get 330.
x=\frac{330}{16}
Divide both sides by 16.
x=\frac{165}{8}
Reduce the fraction \frac{330}{16} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}