Solve for y
y=2
Graph
Share
Copied to clipboard
2\times \frac{7}{3}+2\left(-\frac{5}{3}\right)y+7y=12
Use the distributive property to multiply 2 by \frac{7}{3}-\frac{5}{3}y.
\frac{2\times 7}{3}+2\left(-\frac{5}{3}\right)y+7y=12
Express 2\times \frac{7}{3} as a single fraction.
\frac{14}{3}+2\left(-\frac{5}{3}\right)y+7y=12
Multiply 2 and 7 to get 14.
\frac{14}{3}+\frac{2\left(-5\right)}{3}y+7y=12
Express 2\left(-\frac{5}{3}\right) as a single fraction.
\frac{14}{3}+\frac{-10}{3}y+7y=12
Multiply 2 and -5 to get -10.
\frac{14}{3}-\frac{10}{3}y+7y=12
Fraction \frac{-10}{3} can be rewritten as -\frac{10}{3} by extracting the negative sign.
\frac{14}{3}+\frac{11}{3}y=12
Combine -\frac{10}{3}y and 7y to get \frac{11}{3}y.
\frac{11}{3}y=12-\frac{14}{3}
Subtract \frac{14}{3} from both sides.
\frac{11}{3}y=\frac{36}{3}-\frac{14}{3}
Convert 12 to fraction \frac{36}{3}.
\frac{11}{3}y=\frac{36-14}{3}
Since \frac{36}{3} and \frac{14}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{11}{3}y=\frac{22}{3}
Subtract 14 from 36 to get 22.
y=\frac{22}{3}\times \frac{3}{11}
Multiply both sides by \frac{3}{11}, the reciprocal of \frac{11}{3}.
y=\frac{22\times 3}{3\times 11}
Multiply \frac{22}{3} times \frac{3}{11} by multiplying numerator times numerator and denominator times denominator.
y=\frac{22}{11}
Cancel out 3 in both numerator and denominator.
y=2
Divide 22 by 11 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}