Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\times \frac{3}{2}x+2\left(-\frac{21}{10}\right)+\frac{17}{10}\geq 2\left(\frac{12}{5}x-\frac{7}{2}\right)
Use the distributive property to multiply 2 by \frac{3}{2}x-\frac{21}{10}.
3x+2\left(-\frac{21}{10}\right)+\frac{17}{10}\geq 2\left(\frac{12}{5}x-\frac{7}{2}\right)
Cancel out 2 and 2.
3x+\frac{2\left(-21\right)}{10}+\frac{17}{10}\geq 2\left(\frac{12}{5}x-\frac{7}{2}\right)
Express 2\left(-\frac{21}{10}\right) as a single fraction.
3x+\frac{-42}{10}+\frac{17}{10}\geq 2\left(\frac{12}{5}x-\frac{7}{2}\right)
Multiply 2 and -21 to get -42.
3x-\frac{21}{5}+\frac{17}{10}\geq 2\left(\frac{12}{5}x-\frac{7}{2}\right)
Reduce the fraction \frac{-42}{10} to lowest terms by extracting and canceling out 2.
3x-\frac{42}{10}+\frac{17}{10}\geq 2\left(\frac{12}{5}x-\frac{7}{2}\right)
Least common multiple of 5 and 10 is 10. Convert -\frac{21}{5} and \frac{17}{10} to fractions with denominator 10.
3x+\frac{-42+17}{10}\geq 2\left(\frac{12}{5}x-\frac{7}{2}\right)
Since -\frac{42}{10} and \frac{17}{10} have the same denominator, add them by adding their numerators.
3x+\frac{-25}{10}\geq 2\left(\frac{12}{5}x-\frac{7}{2}\right)
Add -42 and 17 to get -25.
3x-\frac{5}{2}\geq 2\left(\frac{12}{5}x-\frac{7}{2}\right)
Reduce the fraction \frac{-25}{10} to lowest terms by extracting and canceling out 5.
3x-\frac{5}{2}\geq 2\times \frac{12}{5}x+2\left(-\frac{7}{2}\right)
Use the distributive property to multiply 2 by \frac{12}{5}x-\frac{7}{2}.
3x-\frac{5}{2}\geq \frac{2\times 12}{5}x+2\left(-\frac{7}{2}\right)
Express 2\times \frac{12}{5} as a single fraction.
3x-\frac{5}{2}\geq \frac{24}{5}x+2\left(-\frac{7}{2}\right)
Multiply 2 and 12 to get 24.
3x-\frac{5}{2}\geq \frac{24}{5}x-7
Cancel out 2 and 2.
3x-\frac{5}{2}-\frac{24}{5}x\geq -7
Subtract \frac{24}{5}x from both sides.
-\frac{9}{5}x-\frac{5}{2}\geq -7
Combine 3x and -\frac{24}{5}x to get -\frac{9}{5}x.
-\frac{9}{5}x\geq -7+\frac{5}{2}
Add \frac{5}{2} to both sides.
-\frac{9}{5}x\geq -\frac{14}{2}+\frac{5}{2}
Convert -7 to fraction -\frac{14}{2}.
-\frac{9}{5}x\geq \frac{-14+5}{2}
Since -\frac{14}{2} and \frac{5}{2} have the same denominator, add them by adding their numerators.
-\frac{9}{5}x\geq -\frac{9}{2}
Add -14 and 5 to get -9.
x\leq -\frac{9}{2}\left(-\frac{5}{9}\right)
Multiply both sides by -\frac{5}{9}, the reciprocal of -\frac{9}{5}. Since -\frac{9}{5} is negative, the inequality direction is changed.
x\leq \frac{-9\left(-5\right)}{2\times 9}
Multiply -\frac{9}{2} times -\frac{5}{9} by multiplying numerator times numerator and denominator times denominator.
x\leq \frac{45}{18}
Do the multiplications in the fraction \frac{-9\left(-5\right)}{2\times 9}.
x\leq \frac{5}{2}
Reduce the fraction \frac{45}{18} to lowest terms by extracting and canceling out 9.