Solve for x
x = \frac{\sqrt{10}}{2} \approx 1.58113883
x = -\frac{\sqrt{10}}{2} \approx -1.58113883
Graph
Share
Copied to clipboard
2\times 60\times 1=48x\times \frac{1}{60}\times 60x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 60x, the least common multiple of x,60.
120\times 1=48x\times \frac{1}{60}\times 60x
Multiply 2 and 60 to get 120.
120=48x\times \frac{1}{60}\times 60x
Multiply 120 and 1 to get 120.
120=48x^{2}\times \frac{1}{60}\times 60
Multiply x and x to get x^{2}.
120=\frac{48}{60}x^{2}\times 60
Multiply 48 and \frac{1}{60} to get \frac{48}{60}.
120=\frac{4}{5}x^{2}\times 60
Reduce the fraction \frac{48}{60} to lowest terms by extracting and canceling out 12.
120=\frac{4\times 60}{5}x^{2}
Express \frac{4}{5}\times 60 as a single fraction.
120=\frac{240}{5}x^{2}
Multiply 4 and 60 to get 240.
120=48x^{2}
Divide 240 by 5 to get 48.
48x^{2}=120
Swap sides so that all variable terms are on the left hand side.
x^{2}=\frac{120}{48}
Divide both sides by 48.
x^{2}=\frac{5}{2}
Reduce the fraction \frac{120}{48} to lowest terms by extracting and canceling out 24.
x=\frac{\sqrt{10}}{2} x=-\frac{\sqrt{10}}{2}
Take the square root of both sides of the equation.
2\times 60\times 1=48x\times \frac{1}{60}\times 60x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 60x, the least common multiple of x,60.
120\times 1=48x\times \frac{1}{60}\times 60x
Multiply 2 and 60 to get 120.
120=48x\times \frac{1}{60}\times 60x
Multiply 120 and 1 to get 120.
120=48x^{2}\times \frac{1}{60}\times 60
Multiply x and x to get x^{2}.
120=\frac{48}{60}x^{2}\times 60
Multiply 48 and \frac{1}{60} to get \frac{48}{60}.
120=\frac{4}{5}x^{2}\times 60
Reduce the fraction \frac{48}{60} to lowest terms by extracting and canceling out 12.
120=\frac{4\times 60}{5}x^{2}
Express \frac{4}{5}\times 60 as a single fraction.
120=\frac{240}{5}x^{2}
Multiply 4 and 60 to get 240.
120=48x^{2}
Divide 240 by 5 to get 48.
48x^{2}=120
Swap sides so that all variable terms are on the left hand side.
48x^{2}-120=0
Subtract 120 from both sides.
x=\frac{0±\sqrt{0^{2}-4\times 48\left(-120\right)}}{2\times 48}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 48 for a, 0 for b, and -120 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 48\left(-120\right)}}{2\times 48}
Square 0.
x=\frac{0±\sqrt{-192\left(-120\right)}}{2\times 48}
Multiply -4 times 48.
x=\frac{0±\sqrt{23040}}{2\times 48}
Multiply -192 times -120.
x=\frac{0±48\sqrt{10}}{2\times 48}
Take the square root of 23040.
x=\frac{0±48\sqrt{10}}{96}
Multiply 2 times 48.
x=\frac{\sqrt{10}}{2}
Now solve the equation x=\frac{0±48\sqrt{10}}{96} when ± is plus.
x=-\frac{\sqrt{10}}{2}
Now solve the equation x=\frac{0±48\sqrt{10}}{96} when ± is minus.
x=\frac{\sqrt{10}}{2} x=-\frac{\sqrt{10}}{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}