Solve for m
m=-8
m=6
Share
Copied to clipboard
\frac{1}{4}m^{2}-\frac{1}{2}m-6=6-m
Use the distributive property to multiply 2 by \frac{1}{8}m^{2}-\frac{1}{4}m-3.
\frac{1}{4}m^{2}-\frac{1}{2}m-6-6=-m
Subtract 6 from both sides.
\frac{1}{4}m^{2}-\frac{1}{2}m-12=-m
Subtract 6 from -6 to get -12.
\frac{1}{4}m^{2}-\frac{1}{2}m-12+m=0
Add m to both sides.
\frac{1}{4}m^{2}+\frac{1}{2}m-12=0
Combine -\frac{1}{2}m and m to get \frac{1}{2}m.
m=\frac{-\frac{1}{2}±\sqrt{\left(\frac{1}{2}\right)^{2}-4\times \frac{1}{4}\left(-12\right)}}{2\times \frac{1}{4}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{4} for a, \frac{1}{2} for b, and -12 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-4\times \frac{1}{4}\left(-12\right)}}{2\times \frac{1}{4}}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
m=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-\left(-12\right)}}{2\times \frac{1}{4}}
Multiply -4 times \frac{1}{4}.
m=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}+12}}{2\times \frac{1}{4}}
Multiply -1 times -12.
m=\frac{-\frac{1}{2}±\sqrt{\frac{49}{4}}}{2\times \frac{1}{4}}
Add \frac{1}{4} to 12.
m=\frac{-\frac{1}{2}±\frac{7}{2}}{2\times \frac{1}{4}}
Take the square root of \frac{49}{4}.
m=\frac{-\frac{1}{2}±\frac{7}{2}}{\frac{1}{2}}
Multiply 2 times \frac{1}{4}.
m=\frac{3}{\frac{1}{2}}
Now solve the equation m=\frac{-\frac{1}{2}±\frac{7}{2}}{\frac{1}{2}} when ± is plus. Add -\frac{1}{2} to \frac{7}{2} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
m=6
Divide 3 by \frac{1}{2} by multiplying 3 by the reciprocal of \frac{1}{2}.
m=-\frac{4}{\frac{1}{2}}
Now solve the equation m=\frac{-\frac{1}{2}±\frac{7}{2}}{\frac{1}{2}} when ± is minus. Subtract \frac{7}{2} from -\frac{1}{2} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
m=-8
Divide -4 by \frac{1}{2} by multiplying -4 by the reciprocal of \frac{1}{2}.
m=6 m=-8
The equation is now solved.
\frac{1}{4}m^{2}-\frac{1}{2}m-6=6-m
Use the distributive property to multiply 2 by \frac{1}{8}m^{2}-\frac{1}{4}m-3.
\frac{1}{4}m^{2}-\frac{1}{2}m-6+m=6
Add m to both sides.
\frac{1}{4}m^{2}+\frac{1}{2}m-6=6
Combine -\frac{1}{2}m and m to get \frac{1}{2}m.
\frac{1}{4}m^{2}+\frac{1}{2}m=6+6
Add 6 to both sides.
\frac{1}{4}m^{2}+\frac{1}{2}m=12
Add 6 and 6 to get 12.
\frac{\frac{1}{4}m^{2}+\frac{1}{2}m}{\frac{1}{4}}=\frac{12}{\frac{1}{4}}
Multiply both sides by 4.
m^{2}+\frac{\frac{1}{2}}{\frac{1}{4}}m=\frac{12}{\frac{1}{4}}
Dividing by \frac{1}{4} undoes the multiplication by \frac{1}{4}.
m^{2}+2m=\frac{12}{\frac{1}{4}}
Divide \frac{1}{2} by \frac{1}{4} by multiplying \frac{1}{2} by the reciprocal of \frac{1}{4}.
m^{2}+2m=48
Divide 12 by \frac{1}{4} by multiplying 12 by the reciprocal of \frac{1}{4}.
m^{2}+2m+1^{2}=48+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}+2m+1=48+1
Square 1.
m^{2}+2m+1=49
Add 48 to 1.
\left(m+1\right)^{2}=49
Factor m^{2}+2m+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+1\right)^{2}}=\sqrt{49}
Take the square root of both sides of the equation.
m+1=7 m+1=-7
Simplify.
m=6 m=-8
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}