Solve for x
x=\frac{1-2y}{15}
Solve for y
y=\frac{1-15x}{2}
Graph
Share
Copied to clipboard
y-6x=2y+\frac{1}{2}\left(3x-1\right)
Use the distributive property to multiply 2 by \frac{1}{2}y-3x.
y-6x=2y+\frac{3}{2}x-\frac{1}{2}
Use the distributive property to multiply \frac{1}{2} by 3x-1.
y-6x-\frac{3}{2}x=2y-\frac{1}{2}
Subtract \frac{3}{2}x from both sides.
y-\frac{15}{2}x=2y-\frac{1}{2}
Combine -6x and -\frac{3}{2}x to get -\frac{15}{2}x.
-\frac{15}{2}x=2y-\frac{1}{2}-y
Subtract y from both sides.
-\frac{15}{2}x=y-\frac{1}{2}
Combine 2y and -y to get y.
\frac{-\frac{15}{2}x}{-\frac{15}{2}}=\frac{y-\frac{1}{2}}{-\frac{15}{2}}
Divide both sides of the equation by -\frac{15}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{y-\frac{1}{2}}{-\frac{15}{2}}
Dividing by -\frac{15}{2} undoes the multiplication by -\frac{15}{2}.
x=\frac{1-2y}{15}
Divide y-\frac{1}{2} by -\frac{15}{2} by multiplying y-\frac{1}{2} by the reciprocal of -\frac{15}{2}.
y-6x=2y+\frac{1}{2}\left(3x-1\right)
Use the distributive property to multiply 2 by \frac{1}{2}y-3x.
y-6x=2y+\frac{3}{2}x-\frac{1}{2}
Use the distributive property to multiply \frac{1}{2} by 3x-1.
y-6x-2y=\frac{3}{2}x-\frac{1}{2}
Subtract 2y from both sides.
-y-6x=\frac{3}{2}x-\frac{1}{2}
Combine y and -2y to get -y.
-y=\frac{3}{2}x-\frac{1}{2}+6x
Add 6x to both sides.
-y=\frac{15}{2}x-\frac{1}{2}
Combine \frac{3}{2}x and 6x to get \frac{15}{2}x.
-y=\frac{15x-1}{2}
The equation is in standard form.
\frac{-y}{-1}=\frac{15x-1}{-2}
Divide both sides by -1.
y=\frac{15x-1}{-2}
Dividing by -1 undoes the multiplication by -1.
y=\frac{1-15x}{2}
Divide \frac{15x-1}{2} by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}