Solve for p
p=33
Share
Copied to clipboard
2\times \frac{1}{8}+\left(\frac{1}{2}\right)^{2}p-25\times \frac{1}{2}+4=0
Calculate \frac{1}{2} to the power of 3 and get \frac{1}{8}.
\frac{2}{8}+\left(\frac{1}{2}\right)^{2}p-25\times \frac{1}{2}+4=0
Multiply 2 and \frac{1}{8} to get \frac{2}{8}.
\frac{1}{4}+\left(\frac{1}{2}\right)^{2}p-25\times \frac{1}{2}+4=0
Reduce the fraction \frac{2}{8} to lowest terms by extracting and canceling out 2.
\frac{1}{4}+\frac{1}{4}p-25\times \frac{1}{2}+4=0
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{1}{4}+\frac{1}{4}p-\frac{25}{2}+4=0
Multiply 25 and \frac{1}{2} to get \frac{25}{2}.
\frac{1}{4}+\frac{1}{4}p-\frac{50}{4}+4=0
Least common multiple of 4 and 2 is 4. Convert \frac{1}{4} and \frac{25}{2} to fractions with denominator 4.
\frac{1-50}{4}+\frac{1}{4}p+4=0
Since \frac{1}{4} and \frac{50}{4} have the same denominator, subtract them by subtracting their numerators.
-\frac{49}{4}+\frac{1}{4}p+4=0
Subtract 50 from 1 to get -49.
-\frac{49}{4}+\frac{1}{4}p+\frac{16}{4}=0
Convert 4 to fraction \frac{16}{4}.
\frac{-49+16}{4}+\frac{1}{4}p=0
Since -\frac{49}{4} and \frac{16}{4} have the same denominator, add them by adding their numerators.
-\frac{33}{4}+\frac{1}{4}p=0
Add -49 and 16 to get -33.
\frac{1}{4}p=\frac{33}{4}
Add \frac{33}{4} to both sides. Anything plus zero gives itself.
p=\frac{33}{4}\times 4
Multiply both sides by 4, the reciprocal of \frac{1}{4}.
p=33
Cancel out 4 and 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}