Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

2\left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+\sqrt{3}\right)-6\times 6\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
2\left(\frac{\sqrt{2}}{2}+\sqrt{3}\right)-6\times 6\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)
The square of \sqrt{2} is 2.
2\left(\frac{\sqrt{2}}{2}+\frac{2\sqrt{3}}{2}\right)-6\times 6\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{3} times \frac{2}{2}.
2\times \frac{\sqrt{2}+2\sqrt{3}}{2}-6\times 6\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)
Since \frac{\sqrt{2}}{2} and \frac{2\sqrt{3}}{2} have the same denominator, add them by adding their numerators.
\sqrt{2}+2\sqrt{3}-6\times 6\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)
Cancel out 2 and 2.
\sqrt{2}+2\sqrt{3}-36\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)
Multiply 6 and 6 to get 36.
\sqrt{2}+2\sqrt{3}-36\left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-\frac{1}{\sqrt{3}}\right)
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\sqrt{2}+2\sqrt{3}-36\left(\frac{\sqrt{2}}{2}-\frac{1}{\sqrt{3}}\right)
The square of \sqrt{2} is 2.
\sqrt{2}+2\sqrt{3}-36\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\sqrt{2}+2\sqrt{3}-36\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}\right)
The square of \sqrt{3} is 3.
\sqrt{2}+2\sqrt{3}-36\left(\frac{3\sqrt{2}}{6}-\frac{2\sqrt{3}}{6}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{\sqrt{2}}{2} times \frac{3}{3}. Multiply \frac{\sqrt{3}}{3} times \frac{2}{2}.
\sqrt{2}+2\sqrt{3}-36\times \frac{3\sqrt{2}-2\sqrt{3}}{6}
Since \frac{3\sqrt{2}}{6} and \frac{2\sqrt{3}}{6} have the same denominator, subtract them by subtracting their numerators.
\sqrt{2}+2\sqrt{3}-6\left(3\sqrt{2}-2\sqrt{3}\right)
Cancel out 6, the greatest common factor in 36 and 6.
\sqrt{2}+2\sqrt{3}-18\sqrt{2}+12\sqrt{3}
Use the distributive property to multiply -6 by 3\sqrt{2}-2\sqrt{3}.
-17\sqrt{2}+2\sqrt{3}+12\sqrt{3}
Combine \sqrt{2} and -18\sqrt{2} to get -17\sqrt{2}.
-17\sqrt{2}+14\sqrt{3}
Combine 2\sqrt{3} and 12\sqrt{3} to get 14\sqrt{3}.