Evaluate
14\sqrt{3}-17\sqrt{2}\approx 0.207080746
Factor
14 \sqrt{3} - 17 \sqrt{2} = 0.207080746
Share
Copied to clipboard
2\left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+\sqrt{3}\right)-6\times 6\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
2\left(\frac{\sqrt{2}}{2}+\sqrt{3}\right)-6\times 6\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)
The square of \sqrt{2} is 2.
2\left(\frac{\sqrt{2}}{2}+\frac{2\sqrt{3}}{2}\right)-6\times 6\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{3} times \frac{2}{2}.
2\times \frac{\sqrt{2}+2\sqrt{3}}{2}-6\times 6\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)
Since \frac{\sqrt{2}}{2} and \frac{2\sqrt{3}}{2} have the same denominator, add them by adding their numerators.
\sqrt{2}+2\sqrt{3}-6\times 6\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)
Cancel out 2 and 2.
\sqrt{2}+2\sqrt{3}-36\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\right)
Multiply 6 and 6 to get 36.
\sqrt{2}+2\sqrt{3}-36\left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-\frac{1}{\sqrt{3}}\right)
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\sqrt{2}+2\sqrt{3}-36\left(\frac{\sqrt{2}}{2}-\frac{1}{\sqrt{3}}\right)
The square of \sqrt{2} is 2.
\sqrt{2}+2\sqrt{3}-36\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\sqrt{2}+2\sqrt{3}-36\left(\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}\right)
The square of \sqrt{3} is 3.
\sqrt{2}+2\sqrt{3}-36\left(\frac{3\sqrt{2}}{6}-\frac{2\sqrt{3}}{6}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{\sqrt{2}}{2} times \frac{3}{3}. Multiply \frac{\sqrt{3}}{3} times \frac{2}{2}.
\sqrt{2}+2\sqrt{3}-36\times \frac{3\sqrt{2}-2\sqrt{3}}{6}
Since \frac{3\sqrt{2}}{6} and \frac{2\sqrt{3}}{6} have the same denominator, subtract them by subtracting their numerators.
\sqrt{2}+2\sqrt{3}-6\left(3\sqrt{2}-2\sqrt{3}\right)
Cancel out 6, the greatest common factor in 36 and 6.
\sqrt{2}+2\sqrt{3}-18\sqrt{2}+12\sqrt{3}
Use the distributive property to multiply -6 by 3\sqrt{2}-2\sqrt{3}.
-17\sqrt{2}+2\sqrt{3}+12\sqrt{3}
Combine \sqrt{2} and -18\sqrt{2} to get -17\sqrt{2}.
-17\sqrt{2}+14\sqrt{3}
Combine 2\sqrt{3} and 12\sqrt{3} to get 14\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}