Factor
\left(y-7\right)\left(2y+1\right)
Evaluate
\left(y-7\right)\left(2y+1\right)
Graph
Share
Copied to clipboard
a+b=-13 ab=2\left(-7\right)=-14
Factor the expression by grouping. First, the expression needs to be rewritten as 2y^{2}+ay+by-7. To find a and b, set up a system to be solved.
1,-14 2,-7
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -14.
1-14=-13 2-7=-5
Calculate the sum for each pair.
a=-14 b=1
The solution is the pair that gives sum -13.
\left(2y^{2}-14y\right)+\left(y-7\right)
Rewrite 2y^{2}-13y-7 as \left(2y^{2}-14y\right)+\left(y-7\right).
2y\left(y-7\right)+y-7
Factor out 2y in 2y^{2}-14y.
\left(y-7\right)\left(2y+1\right)
Factor out common term y-7 by using distributive property.
2y^{2}-13y-7=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 2\left(-7\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-13\right)±\sqrt{169-4\times 2\left(-7\right)}}{2\times 2}
Square -13.
y=\frac{-\left(-13\right)±\sqrt{169-8\left(-7\right)}}{2\times 2}
Multiply -4 times 2.
y=\frac{-\left(-13\right)±\sqrt{169+56}}{2\times 2}
Multiply -8 times -7.
y=\frac{-\left(-13\right)±\sqrt{225}}{2\times 2}
Add 169 to 56.
y=\frac{-\left(-13\right)±15}{2\times 2}
Take the square root of 225.
y=\frac{13±15}{2\times 2}
The opposite of -13 is 13.
y=\frac{13±15}{4}
Multiply 2 times 2.
y=\frac{28}{4}
Now solve the equation y=\frac{13±15}{4} when ± is plus. Add 13 to 15.
y=7
Divide 28 by 4.
y=-\frac{2}{4}
Now solve the equation y=\frac{13±15}{4} when ± is minus. Subtract 15 from 13.
y=-\frac{1}{2}
Reduce the fraction \frac{-2}{4} to lowest terms by extracting and canceling out 2.
2y^{2}-13y-7=2\left(y-7\right)\left(y-\left(-\frac{1}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 7 for x_{1} and -\frac{1}{2} for x_{2}.
2y^{2}-13y-7=2\left(y-7\right)\left(y+\frac{1}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
2y^{2}-13y-7=2\left(y-7\right)\times \frac{2y+1}{2}
Add \frac{1}{2} to y by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
2y^{2}-13y-7=\left(y-7\right)\left(2y+1\right)
Cancel out 2, the greatest common factor in 2 and 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}