Factor
\left(2y-3\right)\left(y+4\right)
Evaluate
\left(2y-3\right)\left(y+4\right)
Graph
Share
Copied to clipboard
a+b=5 ab=2\left(-12\right)=-24
Factor the expression by grouping. First, the expression needs to be rewritten as 2y^{2}+ay+by-12. To find a and b, set up a system to be solved.
-1,24 -2,12 -3,8 -4,6
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -24.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
Calculate the sum for each pair.
a=-3 b=8
The solution is the pair that gives sum 5.
\left(2y^{2}-3y\right)+\left(8y-12\right)
Rewrite 2y^{2}+5y-12 as \left(2y^{2}-3y\right)+\left(8y-12\right).
y\left(2y-3\right)+4\left(2y-3\right)
Factor out y in the first and 4 in the second group.
\left(2y-3\right)\left(y+4\right)
Factor out common term 2y-3 by using distributive property.
2y^{2}+5y-12=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-5±\sqrt{5^{2}-4\times 2\left(-12\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-5±\sqrt{25-4\times 2\left(-12\right)}}{2\times 2}
Square 5.
y=\frac{-5±\sqrt{25-8\left(-12\right)}}{2\times 2}
Multiply -4 times 2.
y=\frac{-5±\sqrt{25+96}}{2\times 2}
Multiply -8 times -12.
y=\frac{-5±\sqrt{121}}{2\times 2}
Add 25 to 96.
y=\frac{-5±11}{2\times 2}
Take the square root of 121.
y=\frac{-5±11}{4}
Multiply 2 times 2.
y=\frac{6}{4}
Now solve the equation y=\frac{-5±11}{4} when ± is plus. Add -5 to 11.
y=\frac{3}{2}
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
y=-\frac{16}{4}
Now solve the equation y=\frac{-5±11}{4} when ± is minus. Subtract 11 from -5.
y=-4
Divide -16 by 4.
2y^{2}+5y-12=2\left(y-\frac{3}{2}\right)\left(y-\left(-4\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3}{2} for x_{1} and -4 for x_{2}.
2y^{2}+5y-12=2\left(y-\frac{3}{2}\right)\left(y+4\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
2y^{2}+5y-12=2\times \frac{2y-3}{2}\left(y+4\right)
Subtract \frac{3}{2} from y by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
2y^{2}+5y-12=\left(2y-3\right)\left(y+4\right)
Cancel out 2, the greatest common factor in 2 and 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}