Factor
\left(x-2a\right)\left(x+a\right)\left(2x+a\right)
Evaluate
\left(x-2a\right)\left(x+a\right)\left(2x+a\right)
Graph
Share
Copied to clipboard
\left(2x+2a\right)\left(x^{2}-\frac{3ax}{2}-a^{2}\right)
Consider 2x^{3}-ax^{2}-5a^{2}x-2a^{3} as a polynomial over variable x. Find one factor of the form kx^{m}+n, where kx^{m} divides the monomial with the highest power 2x^{3} and n divides the constant factor -2a^{3}. One such factor is 2x+2a. Factor the polynomial by dividing it by this factor.
2\left(x+a\right)
Consider 2x+2a. Factor out 2.
\left(2x+a\right)\left(\frac{x}{2}-a\right)
Consider x^{2}-\frac{3}{2}ax-a^{2}. Consider x^{2}-\frac{3ax}{2}-a^{2} as a polynomial over variable x. Find one factor of the form x^{p}+q, where x^{p} divides the monomial with the highest power x^{2} and q divides the constant factor -a^{2}. One such factor is 2x+a. Factor the polynomial by dividing it by this factor.
\left(x-2a\right)\left(x+a\right)\left(2x+a\right)
Rewrite the complete factored expression. Simplify.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}