Solve for y (complex solution)
\left\{\begin{matrix}y=\frac{x}{x-1}\text{, }&x\neq 1\\y\in \mathrm{C}\text{, }&x=1\end{matrix}\right.
Solve for y
\left\{\begin{matrix}y=\frac{x}{x-1}\text{, }&x\neq 1\\y\in \mathrm{R}\text{, }&x=1\end{matrix}\right.
Solve for x
\left\{\begin{matrix}\\x=1\text{, }&\text{unconditionally}\\x=\frac{y}{y-1}\text{, }&y\neq 1\end{matrix}\right.
Graph
Share
Copied to clipboard
2x^{3}+x-yx+y-3=\left(x-1\right)\left(2x^{2}+\left(3-y\right)x+3\right)
Use the distributive property to multiply 1-y by x.
2x^{3}+x-yx+y-3=\left(x-1\right)\left(2x^{2}+3x-yx+3\right)
Use the distributive property to multiply 3-y by x.
2x^{3}+x-yx+y-3=2x^{3}+x^{2}-yx^{2}+yx-3
Use the distributive property to multiply x-1 by 2x^{2}+3x-yx+3 and combine like terms.
2x^{3}+x-yx+y-3+yx^{2}=2x^{3}+x^{2}+yx-3
Add yx^{2} to both sides.
2x^{3}+x-yx+y-3+yx^{2}-yx=2x^{3}+x^{2}-3
Subtract yx from both sides.
2x^{3}+x-2yx+y-3+yx^{2}=2x^{3}+x^{2}-3
Combine -yx and -yx to get -2yx.
x-2yx+y-3+yx^{2}=2x^{3}+x^{2}-3-2x^{3}
Subtract 2x^{3} from both sides.
x-2yx+y-3+yx^{2}=x^{2}-3
Combine 2x^{3} and -2x^{3} to get 0.
-2yx+y-3+yx^{2}=x^{2}-3-x
Subtract x from both sides.
-2yx+y+yx^{2}=x^{2}-3-x+3
Add 3 to both sides.
-2yx+y+yx^{2}=x^{2}-x
Add -3 and 3 to get 0.
\left(-2x+1+x^{2}\right)y=x^{2}-x
Combine all terms containing y.
\left(x^{2}-2x+1\right)y=x^{2}-x
The equation is in standard form.
\frac{\left(x^{2}-2x+1\right)y}{x^{2}-2x+1}=\frac{x\left(x-1\right)}{x^{2}-2x+1}
Divide both sides by -2x+1+x^{2}.
y=\frac{x\left(x-1\right)}{x^{2}-2x+1}
Dividing by -2x+1+x^{2} undoes the multiplication by -2x+1+x^{2}.
y=\frac{x}{x-1}
Divide x\left(-1+x\right) by -2x+1+x^{2}.
2x^{3}+x-yx+y-3=\left(x-1\right)\left(2x^{2}+\left(3-y\right)x+3\right)
Use the distributive property to multiply 1-y by x.
2x^{3}+x-yx+y-3=\left(x-1\right)\left(2x^{2}+3x-yx+3\right)
Use the distributive property to multiply 3-y by x.
2x^{3}+x-yx+y-3=2x^{3}+x^{2}-yx^{2}+yx-3
Use the distributive property to multiply x-1 by 2x^{2}+3x-yx+3 and combine like terms.
2x^{3}+x-yx+y-3+yx^{2}=2x^{3}+x^{2}+yx-3
Add yx^{2} to both sides.
2x^{3}+x-yx+y-3+yx^{2}-yx=2x^{3}+x^{2}-3
Subtract yx from both sides.
2x^{3}+x-2yx+y-3+yx^{2}=2x^{3}+x^{2}-3
Combine -yx and -yx to get -2yx.
x-2yx+y-3+yx^{2}=2x^{3}+x^{2}-3-2x^{3}
Subtract 2x^{3} from both sides.
x-2yx+y-3+yx^{2}=x^{2}-3
Combine 2x^{3} and -2x^{3} to get 0.
-2yx+y-3+yx^{2}=x^{2}-3-x
Subtract x from both sides.
-2yx+y+yx^{2}=x^{2}-3-x+3
Add 3 to both sides.
-2yx+y+yx^{2}=x^{2}-x
Add -3 and 3 to get 0.
\left(-2x+1+x^{2}\right)y=x^{2}-x
Combine all terms containing y.
\left(x^{2}-2x+1\right)y=x^{2}-x
The equation is in standard form.
\frac{\left(x^{2}-2x+1\right)y}{x^{2}-2x+1}=\frac{x\left(x-1\right)}{x^{2}-2x+1}
Divide both sides by -2x+1+x^{2}.
y=\frac{x\left(x-1\right)}{x^{2}-2x+1}
Dividing by -2x+1+x^{2} undoes the multiplication by -2x+1+x^{2}.
y=\frac{x}{x-1}
Divide x\left(-1+x\right) by -2x+1+x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}