Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}-90x-3600=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-90\right)±\sqrt{\left(-90\right)^{2}-4\times 2\left(-3600\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -90 for b, and -3600 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-90\right)±\sqrt{8100-4\times 2\left(-3600\right)}}{2\times 2}
Square -90.
x=\frac{-\left(-90\right)±\sqrt{8100-8\left(-3600\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-90\right)±\sqrt{8100+28800}}{2\times 2}
Multiply -8 times -3600.
x=\frac{-\left(-90\right)±\sqrt{36900}}{2\times 2}
Add 8100 to 28800.
x=\frac{-\left(-90\right)±30\sqrt{41}}{2\times 2}
Take the square root of 36900.
x=\frac{90±30\sqrt{41}}{2\times 2}
The opposite of -90 is 90.
x=\frac{90±30\sqrt{41}}{4}
Multiply 2 times 2.
x=\frac{30\sqrt{41}+90}{4}
Now solve the equation x=\frac{90±30\sqrt{41}}{4} when ± is plus. Add 90 to 30\sqrt{41}.
x=\frac{15\sqrt{41}+45}{2}
Divide 90+30\sqrt{41} by 4.
x=\frac{90-30\sqrt{41}}{4}
Now solve the equation x=\frac{90±30\sqrt{41}}{4} when ± is minus. Subtract 30\sqrt{41} from 90.
x=\frac{45-15\sqrt{41}}{2}
Divide 90-30\sqrt{41} by 4.
x=\frac{15\sqrt{41}+45}{2} x=\frac{45-15\sqrt{41}}{2}
The equation is now solved.
2x^{2}-90x-3600=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}-90x-3600-\left(-3600\right)=-\left(-3600\right)
Add 3600 to both sides of the equation.
2x^{2}-90x=-\left(-3600\right)
Subtracting -3600 from itself leaves 0.
2x^{2}-90x=3600
Subtract -3600 from 0.
\frac{2x^{2}-90x}{2}=\frac{3600}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{90}{2}\right)x=\frac{3600}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-45x=\frac{3600}{2}
Divide -90 by 2.
x^{2}-45x=1800
Divide 3600 by 2.
x^{2}-45x+\left(-\frac{45}{2}\right)^{2}=1800+\left(-\frac{45}{2}\right)^{2}
Divide -45, the coefficient of the x term, by 2 to get -\frac{45}{2}. Then add the square of -\frac{45}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-45x+\frac{2025}{4}=1800+\frac{2025}{4}
Square -\frac{45}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-45x+\frac{2025}{4}=\frac{9225}{4}
Add 1800 to \frac{2025}{4}.
\left(x-\frac{45}{2}\right)^{2}=\frac{9225}{4}
Factor x^{2}-45x+\frac{2025}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{45}{2}\right)^{2}}=\sqrt{\frac{9225}{4}}
Take the square root of both sides of the equation.
x-\frac{45}{2}=\frac{15\sqrt{41}}{2} x-\frac{45}{2}=-\frac{15\sqrt{41}}{2}
Simplify.
x=\frac{15\sqrt{41}+45}{2} x=\frac{45-15\sqrt{41}}{2}
Add \frac{45}{2} to both sides of the equation.