Solve for x
x=\frac{\sqrt{545}}{10}+2\approx 4.334523506
x=-\frac{\sqrt{545}}{10}+2\approx -0.334523506
Graph
Share
Copied to clipboard
2x^{2}-8x-2.9=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\left(-2.9\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -8 for b, and -2.9 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\left(-2.9\right)}}{2\times 2}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-8\left(-2.9\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-8\right)±\sqrt{64+23.2}}{2\times 2}
Multiply -8 times -2.9.
x=\frac{-\left(-8\right)±\sqrt{87.2}}{2\times 2}
Add 64 to 23.2.
x=\frac{-\left(-8\right)±\frac{2\sqrt{545}}{5}}{2\times 2}
Take the square root of 87.2.
x=\frac{8±\frac{2\sqrt{545}}{5}}{2\times 2}
The opposite of -8 is 8.
x=\frac{8±\frac{2\sqrt{545}}{5}}{4}
Multiply 2 times 2.
x=\frac{\frac{2\sqrt{545}}{5}+8}{4}
Now solve the equation x=\frac{8±\frac{2\sqrt{545}}{5}}{4} when ± is plus. Add 8 to \frac{2\sqrt{545}}{5}.
x=\frac{\sqrt{545}}{10}+2
Divide 8+\frac{2\sqrt{545}}{5} by 4.
x=\frac{-\frac{2\sqrt{545}}{5}+8}{4}
Now solve the equation x=\frac{8±\frac{2\sqrt{545}}{5}}{4} when ± is minus. Subtract \frac{2\sqrt{545}}{5} from 8.
x=-\frac{\sqrt{545}}{10}+2
Divide 8-\frac{2\sqrt{545}}{5} by 4.
x=\frac{\sqrt{545}}{10}+2 x=-\frac{\sqrt{545}}{10}+2
The equation is now solved.
2x^{2}-8x-2.9=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}-8x-2.9-\left(-2.9\right)=-\left(-2.9\right)
Add 2.9 to both sides of the equation.
2x^{2}-8x=-\left(-2.9\right)
Subtracting -2.9 from itself leaves 0.
2x^{2}-8x=2.9
Subtract -2.9 from 0.
\frac{2x^{2}-8x}{2}=\frac{2.9}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{8}{2}\right)x=\frac{2.9}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-4x=\frac{2.9}{2}
Divide -8 by 2.
x^{2}-4x=1.45
Divide 2.9 by 2.
x^{2}-4x+\left(-2\right)^{2}=1.45+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=1.45+4
Square -2.
x^{2}-4x+4=5.45
Add 1.45 to 4.
\left(x-2\right)^{2}=5.45
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{5.45}
Take the square root of both sides of the equation.
x-2=\frac{\sqrt{545}}{10} x-2=-\frac{\sqrt{545}}{10}
Simplify.
x=\frac{\sqrt{545}}{10}+2 x=-\frac{\sqrt{545}}{10}+2
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}