Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

factor(2x^{2}-8x-18)
Multiply 2 and 9 to get 18.
2x^{2}-8x-18=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\left(-18\right)}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\left(-18\right)}}{2\times 2}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-8\left(-18\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-8\right)±\sqrt{64+144}}{2\times 2}
Multiply -8 times -18.
x=\frac{-\left(-8\right)±\sqrt{208}}{2\times 2}
Add 64 to 144.
x=\frac{-\left(-8\right)±4\sqrt{13}}{2\times 2}
Take the square root of 208.
x=\frac{8±4\sqrt{13}}{2\times 2}
The opposite of -8 is 8.
x=\frac{8±4\sqrt{13}}{4}
Multiply 2 times 2.
x=\frac{4\sqrt{13}+8}{4}
Now solve the equation x=\frac{8±4\sqrt{13}}{4} when ± is plus. Add 8 to 4\sqrt{13}.
x=\sqrt{13}+2
Divide 8+4\sqrt{13} by 4.
x=\frac{8-4\sqrt{13}}{4}
Now solve the equation x=\frac{8±4\sqrt{13}}{4} when ± is minus. Subtract 4\sqrt{13} from 8.
x=2-\sqrt{13}
Divide 8-4\sqrt{13} by 4.
2x^{2}-8x-18=2\left(x-\left(\sqrt{13}+2\right)\right)\left(x-\left(2-\sqrt{13}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 2+\sqrt{13} for x_{1} and 2-\sqrt{13} for x_{2}.
2x^{2}-8x-18
Multiply 2 and 9 to get 18.