Solve for x
x=-2
x=6
Graph
Share
Copied to clipboard
2x^{2}-8x-24=0
Multiply 2 and 12 to get 24.
x^{2}-4x-12=0
Divide both sides by 2.
a+b=-4 ab=1\left(-12\right)=-12
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-12. To find a and b, set up a system to be solved.
1,-12 2,-6 3,-4
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -12.
1-12=-11 2-6=-4 3-4=-1
Calculate the sum for each pair.
a=-6 b=2
The solution is the pair that gives sum -4.
\left(x^{2}-6x\right)+\left(2x-12\right)
Rewrite x^{2}-4x-12 as \left(x^{2}-6x\right)+\left(2x-12\right).
x\left(x-6\right)+2\left(x-6\right)
Factor out x in the first and 2 in the second group.
\left(x-6\right)\left(x+2\right)
Factor out common term x-6 by using distributive property.
x=6 x=-2
To find equation solutions, solve x-6=0 and x+2=0.
2x^{2}-8x-24=0
Multiply 2 and 12 to get 24.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\left(-24\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -8 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\left(-24\right)}}{2\times 2}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-8\left(-24\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-8\right)±\sqrt{64+192}}{2\times 2}
Multiply -8 times -24.
x=\frac{-\left(-8\right)±\sqrt{256}}{2\times 2}
Add 64 to 192.
x=\frac{-\left(-8\right)±16}{2\times 2}
Take the square root of 256.
x=\frac{8±16}{2\times 2}
The opposite of -8 is 8.
x=\frac{8±16}{4}
Multiply 2 times 2.
x=\frac{24}{4}
Now solve the equation x=\frac{8±16}{4} when ± is plus. Add 8 to 16.
x=6
Divide 24 by 4.
x=-\frac{8}{4}
Now solve the equation x=\frac{8±16}{4} when ± is minus. Subtract 16 from 8.
x=-2
Divide -8 by 4.
x=6 x=-2
The equation is now solved.
2x^{2}-8x-24=0
Multiply 2 and 12 to get 24.
2x^{2}-8x=24
Add 24 to both sides. Anything plus zero gives itself.
\frac{2x^{2}-8x}{2}=\frac{24}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{8}{2}\right)x=\frac{24}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-4x=\frac{24}{2}
Divide -8 by 2.
x^{2}-4x=12
Divide 24 by 2.
x^{2}-4x+\left(-2\right)^{2}=12+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=12+4
Square -2.
x^{2}-4x+4=16
Add 12 to 4.
\left(x-2\right)^{2}=16
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{16}
Take the square root of both sides of the equation.
x-2=4 x-2=-4
Simplify.
x=6 x=-2
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}