Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}-8x-\frac{1}{9}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\left(-\frac{1}{9}\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -8 for b, and -\frac{1}{9} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\left(-\frac{1}{9}\right)}}{2\times 2}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-8\left(-\frac{1}{9}\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-8\right)±\sqrt{64+\frac{8}{9}}}{2\times 2}
Multiply -8 times -\frac{1}{9}.
x=\frac{-\left(-8\right)±\sqrt{\frac{584}{9}}}{2\times 2}
Add 64 to \frac{8}{9}.
x=\frac{-\left(-8\right)±\frac{2\sqrt{146}}{3}}{2\times 2}
Take the square root of \frac{584}{9}.
x=\frac{8±\frac{2\sqrt{146}}{3}}{2\times 2}
The opposite of -8 is 8.
x=\frac{8±\frac{2\sqrt{146}}{3}}{4}
Multiply 2 times 2.
x=\frac{\frac{2\sqrt{146}}{3}+8}{4}
Now solve the equation x=\frac{8±\frac{2\sqrt{146}}{3}}{4} when ± is plus. Add 8 to \frac{2\sqrt{146}}{3}.
x=\frac{\sqrt{146}}{6}+2
Divide 8+\frac{2\sqrt{146}}{3} by 4.
x=\frac{-\frac{2\sqrt{146}}{3}+8}{4}
Now solve the equation x=\frac{8±\frac{2\sqrt{146}}{3}}{4} when ± is minus. Subtract \frac{2\sqrt{146}}{3} from 8.
x=-\frac{\sqrt{146}}{6}+2
Divide 8-\frac{2\sqrt{146}}{3} by 4.
x=\frac{\sqrt{146}}{6}+2 x=-\frac{\sqrt{146}}{6}+2
The equation is now solved.
2x^{2}-8x-\frac{1}{9}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}-8x-\frac{1}{9}-\left(-\frac{1}{9}\right)=-\left(-\frac{1}{9}\right)
Add \frac{1}{9} to both sides of the equation.
2x^{2}-8x=-\left(-\frac{1}{9}\right)
Subtracting -\frac{1}{9} from itself leaves 0.
2x^{2}-8x=\frac{1}{9}
Subtract -\frac{1}{9} from 0.
\frac{2x^{2}-8x}{2}=\frac{\frac{1}{9}}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{8}{2}\right)x=\frac{\frac{1}{9}}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-4x=\frac{\frac{1}{9}}{2}
Divide -8 by 2.
x^{2}-4x=\frac{1}{18}
Divide \frac{1}{9} by 2.
x^{2}-4x+\left(-2\right)^{2}=\frac{1}{18}+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=\frac{1}{18}+4
Square -2.
x^{2}-4x+4=\frac{73}{18}
Add \frac{1}{18} to 4.
\left(x-2\right)^{2}=\frac{73}{18}
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{\frac{73}{18}}
Take the square root of both sides of the equation.
x-2=\frac{\sqrt{146}}{6} x-2=-\frac{\sqrt{146}}{6}
Simplify.
x=\frac{\sqrt{146}}{6}+2 x=-\frac{\sqrt{146}}{6}+2
Add 2 to both sides of the equation.