Solve for x
x=25\sqrt{15}-75\approx 21.824583655
x=-25\sqrt{15}-75\approx -171.824583655
Graph
Share
Copied to clipboard
2x^{2}+300x-7500=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-300±\sqrt{300^{2}-4\times 2\left(-7500\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 300 for b, and -7500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-300±\sqrt{90000-4\times 2\left(-7500\right)}}{2\times 2}
Square 300.
x=\frac{-300±\sqrt{90000-8\left(-7500\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-300±\sqrt{90000+60000}}{2\times 2}
Multiply -8 times -7500.
x=\frac{-300±\sqrt{150000}}{2\times 2}
Add 90000 to 60000.
x=\frac{-300±100\sqrt{15}}{2\times 2}
Take the square root of 150000.
x=\frac{-300±100\sqrt{15}}{4}
Multiply 2 times 2.
x=\frac{100\sqrt{15}-300}{4}
Now solve the equation x=\frac{-300±100\sqrt{15}}{4} when ± is plus. Add -300 to 100\sqrt{15}.
x=25\sqrt{15}-75
Divide -300+100\sqrt{15} by 4.
x=\frac{-100\sqrt{15}-300}{4}
Now solve the equation x=\frac{-300±100\sqrt{15}}{4} when ± is minus. Subtract 100\sqrt{15} from -300.
x=-25\sqrt{15}-75
Divide -300-100\sqrt{15} by 4.
x=25\sqrt{15}-75 x=-25\sqrt{15}-75
The equation is now solved.
2x^{2}+300x-7500=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}+300x-7500-\left(-7500\right)=-\left(-7500\right)
Add 7500 to both sides of the equation.
2x^{2}+300x=-\left(-7500\right)
Subtracting -7500 from itself leaves 0.
2x^{2}+300x=7500
Subtract -7500 from 0.
\frac{2x^{2}+300x}{2}=\frac{7500}{2}
Divide both sides by 2.
x^{2}+\frac{300}{2}x=\frac{7500}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+150x=\frac{7500}{2}
Divide 300 by 2.
x^{2}+150x=3750
Divide 7500 by 2.
x^{2}+150x+75^{2}=3750+75^{2}
Divide 150, the coefficient of the x term, by 2 to get 75. Then add the square of 75 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+150x+5625=3750+5625
Square 75.
x^{2}+150x+5625=9375
Add 3750 to 5625.
\left(x+75\right)^{2}=9375
Factor x^{2}+150x+5625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+75\right)^{2}}=\sqrt{9375}
Take the square root of both sides of the equation.
x+75=25\sqrt{15} x+75=-25\sqrt{15}
Simplify.
x=25\sqrt{15}-75 x=-25\sqrt{15}-75
Subtract 75 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}