Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2\left(x^{2}-3x+2\right)
Factor out 2.
a+b=-3 ab=1\times 2=2
Consider x^{2}-3x+2. Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx+2. To find a and b, set up a system to be solved.
a=-2 b=-1
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. The only such pair is the system solution.
\left(x^{2}-2x\right)+\left(-x+2\right)
Rewrite x^{2}-3x+2 as \left(x^{2}-2x\right)+\left(-x+2\right).
x\left(x-2\right)-\left(x-2\right)
Factor out x in the first and -1 in the second group.
\left(x-2\right)\left(x-1\right)
Factor out common term x-2 by using distributive property.
2\left(x-2\right)\left(x-1\right)
Rewrite the complete factored expression.
2x^{2}-6x+4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 2\times 4}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 2\times 4}}{2\times 2}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-8\times 4}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-6\right)±\sqrt{36-32}}{2\times 2}
Multiply -8 times 4.
x=\frac{-\left(-6\right)±\sqrt{4}}{2\times 2}
Add 36 to -32.
x=\frac{-\left(-6\right)±2}{2\times 2}
Take the square root of 4.
x=\frac{6±2}{2\times 2}
The opposite of -6 is 6.
x=\frac{6±2}{4}
Multiply 2 times 2.
x=\frac{8}{4}
Now solve the equation x=\frac{6±2}{4} when ± is plus. Add 6 to 2.
x=2
Divide 8 by 4.
x=\frac{4}{4}
Now solve the equation x=\frac{6±2}{4} when ± is minus. Subtract 2 from 6.
x=1
Divide 4 by 4.
2x^{2}-6x+4=2\left(x-2\right)\left(x-1\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 2 for x_{1} and 1 for x_{2}.