Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

-4x^{2}-4x+1+5
Combine 2x^{2} and -6x^{2} to get -4x^{2}.
-4x^{2}-4x+6
Add 1 and 5 to get 6.
factor(-4x^{2}-4x+1+5)
Combine 2x^{2} and -6x^{2} to get -4x^{2}.
factor(-4x^{2}-4x+6)
Add 1 and 5 to get 6.
-4x^{2}-4x+6=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-4\right)\times 6}}{2\left(-4\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-4\right)\times 6}}{2\left(-4\right)}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16+16\times 6}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-\left(-4\right)±\sqrt{16+96}}{2\left(-4\right)}
Multiply 16 times 6.
x=\frac{-\left(-4\right)±\sqrt{112}}{2\left(-4\right)}
Add 16 to 96.
x=\frac{-\left(-4\right)±4\sqrt{7}}{2\left(-4\right)}
Take the square root of 112.
x=\frac{4±4\sqrt{7}}{2\left(-4\right)}
The opposite of -4 is 4.
x=\frac{4±4\sqrt{7}}{-8}
Multiply 2 times -4.
x=\frac{4\sqrt{7}+4}{-8}
Now solve the equation x=\frac{4±4\sqrt{7}}{-8} when ± is plus. Add 4 to 4\sqrt{7}.
x=\frac{-\sqrt{7}-1}{2}
Divide 4+4\sqrt{7} by -8.
x=\frac{4-4\sqrt{7}}{-8}
Now solve the equation x=\frac{4±4\sqrt{7}}{-8} when ± is minus. Subtract 4\sqrt{7} from 4.
x=\frac{\sqrt{7}-1}{2}
Divide 4-4\sqrt{7} by -8.
-4x^{2}-4x+6=-4\left(x-\frac{-\sqrt{7}-1}{2}\right)\left(x-\frac{\sqrt{7}-1}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-1-\sqrt{7}}{2} for x_{1} and \frac{-1+\sqrt{7}}{2} for x_{2}.