Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}-3x+3=2014
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
2x^{2}-3x+3-2014=2014-2014
Subtract 2014 from both sides of the equation.
2x^{2}-3x+3-2014=0
Subtracting 2014 from itself leaves 0.
2x^{2}-3x-2011=0
Subtract 2014 from 3.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-2011\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -3 for b, and -2011 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-2011\right)}}{2\times 2}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-8\left(-2011\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-3\right)±\sqrt{9+16088}}{2\times 2}
Multiply -8 times -2011.
x=\frac{-\left(-3\right)±\sqrt{16097}}{2\times 2}
Add 9 to 16088.
x=\frac{3±\sqrt{16097}}{2\times 2}
The opposite of -3 is 3.
x=\frac{3±\sqrt{16097}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{16097}+3}{4}
Now solve the equation x=\frac{3±\sqrt{16097}}{4} when ± is plus. Add 3 to \sqrt{16097}.
x=\frac{3-\sqrt{16097}}{4}
Now solve the equation x=\frac{3±\sqrt{16097}}{4} when ± is minus. Subtract \sqrt{16097} from 3.
x=\frac{\sqrt{16097}+3}{4} x=\frac{3-\sqrt{16097}}{4}
The equation is now solved.
2x^{2}-3x+3=2014
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}-3x+3-3=2014-3
Subtract 3 from both sides of the equation.
2x^{2}-3x=2014-3
Subtracting 3 from itself leaves 0.
2x^{2}-3x=2011
Subtract 3 from 2014.
\frac{2x^{2}-3x}{2}=\frac{2011}{2}
Divide both sides by 2.
x^{2}-\frac{3}{2}x=\frac{2011}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{3}{2}x+\left(-\frac{3}{4}\right)^{2}=\frac{2011}{2}+\left(-\frac{3}{4}\right)^{2}
Divide -\frac{3}{2}, the coefficient of the x term, by 2 to get -\frac{3}{4}. Then add the square of -\frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{2011}{2}+\frac{9}{16}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{3}{2}x+\frac{9}{16}=\frac{16097}{16}
Add \frac{2011}{2} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{4}\right)^{2}=\frac{16097}{16}
Factor x^{2}-\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{4}\right)^{2}}=\sqrt{\frac{16097}{16}}
Take the square root of both sides of the equation.
x-\frac{3}{4}=\frac{\sqrt{16097}}{4} x-\frac{3}{4}=-\frac{\sqrt{16097}}{4}
Simplify.
x=\frac{\sqrt{16097}+3}{4} x=\frac{3-\sqrt{16097}}{4}
Add \frac{3}{4} to both sides of the equation.