Solve for x
x=-1
x=4
Graph
Share
Copied to clipboard
2x^{2}-3x+1-3x=9
Subtract 3x from both sides.
2x^{2}-6x+1=9
Combine -3x and -3x to get -6x.
2x^{2}-6x+1-9=0
Subtract 9 from both sides.
2x^{2}-6x-8=0
Subtract 9 from 1 to get -8.
x^{2}-3x-4=0
Divide both sides by 2.
a+b=-3 ab=1\left(-4\right)=-4
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-4. To find a and b, set up a system to be solved.
1,-4 2,-2
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -4.
1-4=-3 2-2=0
Calculate the sum for each pair.
a=-4 b=1
The solution is the pair that gives sum -3.
\left(x^{2}-4x\right)+\left(x-4\right)
Rewrite x^{2}-3x-4 as \left(x^{2}-4x\right)+\left(x-4\right).
x\left(x-4\right)+x-4
Factor out x in x^{2}-4x.
\left(x-4\right)\left(x+1\right)
Factor out common term x-4 by using distributive property.
x=4 x=-1
To find equation solutions, solve x-4=0 and x+1=0.
2x^{2}-3x+1-3x=9
Subtract 3x from both sides.
2x^{2}-6x+1=9
Combine -3x and -3x to get -6x.
2x^{2}-6x+1-9=0
Subtract 9 from both sides.
2x^{2}-6x-8=0
Subtract 9 from 1 to get -8.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 2\left(-8\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -6 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 2\left(-8\right)}}{2\times 2}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-8\left(-8\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-6\right)±\sqrt{36+64}}{2\times 2}
Multiply -8 times -8.
x=\frac{-\left(-6\right)±\sqrt{100}}{2\times 2}
Add 36 to 64.
x=\frac{-\left(-6\right)±10}{2\times 2}
Take the square root of 100.
x=\frac{6±10}{2\times 2}
The opposite of -6 is 6.
x=\frac{6±10}{4}
Multiply 2 times 2.
x=\frac{16}{4}
Now solve the equation x=\frac{6±10}{4} when ± is plus. Add 6 to 10.
x=4
Divide 16 by 4.
x=-\frac{4}{4}
Now solve the equation x=\frac{6±10}{4} when ± is minus. Subtract 10 from 6.
x=-1
Divide -4 by 4.
x=4 x=-1
The equation is now solved.
2x^{2}-3x+1-3x=9
Subtract 3x from both sides.
2x^{2}-6x+1=9
Combine -3x and -3x to get -6x.
2x^{2}-6x=9-1
Subtract 1 from both sides.
2x^{2}-6x=8
Subtract 1 from 9 to get 8.
\frac{2x^{2}-6x}{2}=\frac{8}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{6}{2}\right)x=\frac{8}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-3x=\frac{8}{2}
Divide -6 by 2.
x^{2}-3x=4
Divide 8 by 2.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=4+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=4+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=\frac{25}{4}
Add 4 to \frac{9}{4}.
\left(x-\frac{3}{2}\right)^{2}=\frac{25}{4}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{5}{2} x-\frac{3}{2}=-\frac{5}{2}
Simplify.
x=4 x=-1
Add \frac{3}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}