Solve for x
x=5
x = \frac{25}{2} = 12\frac{1}{2} = 12.5
Graph
Share
Copied to clipboard
a+b=-35 ab=2\times 125=250
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2x^{2}+ax+bx+125. To find a and b, set up a system to be solved.
-1,-250 -2,-125 -5,-50 -10,-25
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 250.
-1-250=-251 -2-125=-127 -5-50=-55 -10-25=-35
Calculate the sum for each pair.
a=-25 b=-10
The solution is the pair that gives sum -35.
\left(2x^{2}-25x\right)+\left(-10x+125\right)
Rewrite 2x^{2}-35x+125 as \left(2x^{2}-25x\right)+\left(-10x+125\right).
x\left(2x-25\right)-5\left(2x-25\right)
Factor out x in the first and -5 in the second group.
\left(2x-25\right)\left(x-5\right)
Factor out common term 2x-25 by using distributive property.
x=\frac{25}{2} x=5
To find equation solutions, solve 2x-25=0 and x-5=0.
2x^{2}-35x+125=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-35\right)±\sqrt{\left(-35\right)^{2}-4\times 2\times 125}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -35 for b, and 125 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-35\right)±\sqrt{1225-4\times 2\times 125}}{2\times 2}
Square -35.
x=\frac{-\left(-35\right)±\sqrt{1225-8\times 125}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-35\right)±\sqrt{1225-1000}}{2\times 2}
Multiply -8 times 125.
x=\frac{-\left(-35\right)±\sqrt{225}}{2\times 2}
Add 1225 to -1000.
x=\frac{-\left(-35\right)±15}{2\times 2}
Take the square root of 225.
x=\frac{35±15}{2\times 2}
The opposite of -35 is 35.
x=\frac{35±15}{4}
Multiply 2 times 2.
x=\frac{50}{4}
Now solve the equation x=\frac{35±15}{4} when ± is plus. Add 35 to 15.
x=\frac{25}{2}
Reduce the fraction \frac{50}{4} to lowest terms by extracting and canceling out 2.
x=\frac{20}{4}
Now solve the equation x=\frac{35±15}{4} when ± is minus. Subtract 15 from 35.
x=5
Divide 20 by 4.
x=\frac{25}{2} x=5
The equation is now solved.
2x^{2}-35x+125=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}-35x+125-125=-125
Subtract 125 from both sides of the equation.
2x^{2}-35x=-125
Subtracting 125 from itself leaves 0.
\frac{2x^{2}-35x}{2}=-\frac{125}{2}
Divide both sides by 2.
x^{2}-\frac{35}{2}x=-\frac{125}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{35}{2}x+\left(-\frac{35}{4}\right)^{2}=-\frac{125}{2}+\left(-\frac{35}{4}\right)^{2}
Divide -\frac{35}{2}, the coefficient of the x term, by 2 to get -\frac{35}{4}. Then add the square of -\frac{35}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{35}{2}x+\frac{1225}{16}=-\frac{125}{2}+\frac{1225}{16}
Square -\frac{35}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{35}{2}x+\frac{1225}{16}=\frac{225}{16}
Add -\frac{125}{2} to \frac{1225}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{35}{4}\right)^{2}=\frac{225}{16}
Factor x^{2}-\frac{35}{2}x+\frac{1225}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{35}{4}\right)^{2}}=\sqrt{\frac{225}{16}}
Take the square root of both sides of the equation.
x-\frac{35}{4}=\frac{15}{4} x-\frac{35}{4}=-\frac{15}{4}
Simplify.
x=\frac{25}{2} x=5
Add \frac{35}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}