Solve for x
x = \frac{\sqrt{249} + 17}{2} \approx 16.389866919
x=\frac{17-\sqrt{249}}{2}\approx 0.610133081
Graph
Share
Copied to clipboard
2x^{2}-34x+20=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-34\right)±\sqrt{\left(-34\right)^{2}-4\times 2\times 20}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -34 for b, and 20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-34\right)±\sqrt{1156-4\times 2\times 20}}{2\times 2}
Square -34.
x=\frac{-\left(-34\right)±\sqrt{1156-8\times 20}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-34\right)±\sqrt{1156-160}}{2\times 2}
Multiply -8 times 20.
x=\frac{-\left(-34\right)±\sqrt{996}}{2\times 2}
Add 1156 to -160.
x=\frac{-\left(-34\right)±2\sqrt{249}}{2\times 2}
Take the square root of 996.
x=\frac{34±2\sqrt{249}}{2\times 2}
The opposite of -34 is 34.
x=\frac{34±2\sqrt{249}}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{249}+34}{4}
Now solve the equation x=\frac{34±2\sqrt{249}}{4} when ± is plus. Add 34 to 2\sqrt{249}.
x=\frac{\sqrt{249}+17}{2}
Divide 34+2\sqrt{249} by 4.
x=\frac{34-2\sqrt{249}}{4}
Now solve the equation x=\frac{34±2\sqrt{249}}{4} when ± is minus. Subtract 2\sqrt{249} from 34.
x=\frac{17-\sqrt{249}}{2}
Divide 34-2\sqrt{249} by 4.
x=\frac{\sqrt{249}+17}{2} x=\frac{17-\sqrt{249}}{2}
The equation is now solved.
2x^{2}-34x+20=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}-34x+20-20=-20
Subtract 20 from both sides of the equation.
2x^{2}-34x=-20
Subtracting 20 from itself leaves 0.
\frac{2x^{2}-34x}{2}=-\frac{20}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{34}{2}\right)x=-\frac{20}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-17x=-\frac{20}{2}
Divide -34 by 2.
x^{2}-17x=-10
Divide -20 by 2.
x^{2}-17x+\left(-\frac{17}{2}\right)^{2}=-10+\left(-\frac{17}{2}\right)^{2}
Divide -17, the coefficient of the x term, by 2 to get -\frac{17}{2}. Then add the square of -\frac{17}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-17x+\frac{289}{4}=-10+\frac{289}{4}
Square -\frac{17}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-17x+\frac{289}{4}=\frac{249}{4}
Add -10 to \frac{289}{4}.
\left(x-\frac{17}{2}\right)^{2}=\frac{249}{4}
Factor x^{2}-17x+\frac{289}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{2}\right)^{2}}=\sqrt{\frac{249}{4}}
Take the square root of both sides of the equation.
x-\frac{17}{2}=\frac{\sqrt{249}}{2} x-\frac{17}{2}=-\frac{\sqrt{249}}{2}
Simplify.
x=\frac{\sqrt{249}+17}{2} x=\frac{17-\sqrt{249}}{2}
Add \frac{17}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}