Solve for x (complex solution)
x=8+4\sqrt{2}i\approx 8+5.656854249i
x=-4\sqrt{2}i+8\approx 8-5.656854249i
Graph
Share
Copied to clipboard
2x^{2}-32x+192=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-32\right)±\sqrt{\left(-32\right)^{2}-4\times 2\times 192}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -32 for b, and 192 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-32\right)±\sqrt{1024-4\times 2\times 192}}{2\times 2}
Square -32.
x=\frac{-\left(-32\right)±\sqrt{1024-8\times 192}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-32\right)±\sqrt{1024-1536}}{2\times 2}
Multiply -8 times 192.
x=\frac{-\left(-32\right)±\sqrt{-512}}{2\times 2}
Add 1024 to -1536.
x=\frac{-\left(-32\right)±16\sqrt{2}i}{2\times 2}
Take the square root of -512.
x=\frac{32±16\sqrt{2}i}{2\times 2}
The opposite of -32 is 32.
x=\frac{32±16\sqrt{2}i}{4}
Multiply 2 times 2.
x=\frac{32+2^{\frac{9}{2}}i}{4}
Now solve the equation x=\frac{32±16\sqrt{2}i}{4} when ± is plus. Add 32 to 16i\sqrt{2}.
x=8+2^{\frac{5}{2}}i
Divide 32+i\times 2^{\frac{9}{2}} by 4.
x=\frac{-2^{\frac{9}{2}}i+32}{4}
Now solve the equation x=\frac{32±16\sqrt{2}i}{4} when ± is minus. Subtract 16i\sqrt{2} from 32.
x=-2^{\frac{5}{2}}i+8
Divide 32-i\times 2^{\frac{9}{2}} by 4.
x=8+2^{\frac{5}{2}}i x=-2^{\frac{5}{2}}i+8
The equation is now solved.
2x^{2}-32x+192=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}-32x+192-192=-192
Subtract 192 from both sides of the equation.
2x^{2}-32x=-192
Subtracting 192 from itself leaves 0.
\frac{2x^{2}-32x}{2}=-\frac{192}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{32}{2}\right)x=-\frac{192}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-16x=-\frac{192}{2}
Divide -32 by 2.
x^{2}-16x=-96
Divide -192 by 2.
x^{2}-16x+\left(-8\right)^{2}=-96+\left(-8\right)^{2}
Divide -16, the coefficient of the x term, by 2 to get -8. Then add the square of -8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-16x+64=-96+64
Square -8.
x^{2}-16x+64=-32
Add -96 to 64.
\left(x-8\right)^{2}=-32
Factor x^{2}-16x+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-8\right)^{2}}=\sqrt{-32}
Take the square root of both sides of the equation.
x-8=4\sqrt{2}i x-8=-4\sqrt{2}i
Simplify.
x=8+2^{\frac{5}{2}}i x=-2^{\frac{5}{2}}i+8
Add 8 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}