Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}-2x+5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\times 5}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -2 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 2\times 5}}{2\times 2}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-8\times 5}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-2\right)±\sqrt{4-40}}{2\times 2}
Multiply -8 times 5.
x=\frac{-\left(-2\right)±\sqrt{-36}}{2\times 2}
Add 4 to -40.
x=\frac{-\left(-2\right)±6i}{2\times 2}
Take the square root of -36.
x=\frac{2±6i}{2\times 2}
The opposite of -2 is 2.
x=\frac{2±6i}{4}
Multiply 2 times 2.
x=\frac{2+6i}{4}
Now solve the equation x=\frac{2±6i}{4} when ± is plus. Add 2 to 6i.
x=\frac{1}{2}+\frac{3}{2}i
Divide 2+6i by 4.
x=\frac{2-6i}{4}
Now solve the equation x=\frac{2±6i}{4} when ± is minus. Subtract 6i from 2.
x=\frac{1}{2}-\frac{3}{2}i
Divide 2-6i by 4.
x=\frac{1}{2}+\frac{3}{2}i x=\frac{1}{2}-\frac{3}{2}i
The equation is now solved.
2x^{2}-2x+5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}-2x+5-5=-5
Subtract 5 from both sides of the equation.
2x^{2}-2x=-5
Subtracting 5 from itself leaves 0.
\frac{2x^{2}-2x}{2}=-\frac{5}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{2}{2}\right)x=-\frac{5}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-x=-\frac{5}{2}
Divide -2 by 2.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-\frac{5}{2}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=-\frac{5}{2}+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=-\frac{9}{4}
Add -\frac{5}{2} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{2}\right)^{2}=-\frac{9}{4}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{9}{4}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{3}{2}i x-\frac{1}{2}=-\frac{3}{2}i
Simplify.
x=\frac{1}{2}+\frac{3}{2}i x=\frac{1}{2}-\frac{3}{2}i
Add \frac{1}{2} to both sides of the equation.