Solve for x
x=\sqrt{73}+7\approx 15.544003745
x=7-\sqrt{73}\approx -1.544003745
Graph
Share
Copied to clipboard
2x^{2}-28x=48
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
2x^{2}-28x-48=48-48
Subtract 48 from both sides of the equation.
2x^{2}-28x-48=0
Subtracting 48 from itself leaves 0.
x=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}-4\times 2\left(-48\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -28 for b, and -48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-28\right)±\sqrt{784-4\times 2\left(-48\right)}}{2\times 2}
Square -28.
x=\frac{-\left(-28\right)±\sqrt{784-8\left(-48\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-28\right)±\sqrt{784+384}}{2\times 2}
Multiply -8 times -48.
x=\frac{-\left(-28\right)±\sqrt{1168}}{2\times 2}
Add 784 to 384.
x=\frac{-\left(-28\right)±4\sqrt{73}}{2\times 2}
Take the square root of 1168.
x=\frac{28±4\sqrt{73}}{2\times 2}
The opposite of -28 is 28.
x=\frac{28±4\sqrt{73}}{4}
Multiply 2 times 2.
x=\frac{4\sqrt{73}+28}{4}
Now solve the equation x=\frac{28±4\sqrt{73}}{4} when ± is plus. Add 28 to 4\sqrt{73}.
x=\sqrt{73}+7
Divide 28+4\sqrt{73} by 4.
x=\frac{28-4\sqrt{73}}{4}
Now solve the equation x=\frac{28±4\sqrt{73}}{4} when ± is minus. Subtract 4\sqrt{73} from 28.
x=7-\sqrt{73}
Divide 28-4\sqrt{73} by 4.
x=\sqrt{73}+7 x=7-\sqrt{73}
The equation is now solved.
2x^{2}-28x=48
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}-28x}{2}=\frac{48}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{28}{2}\right)x=\frac{48}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-14x=\frac{48}{2}
Divide -28 by 2.
x^{2}-14x=24
Divide 48 by 2.
x^{2}-14x+\left(-7\right)^{2}=24+\left(-7\right)^{2}
Divide -14, the coefficient of the x term, by 2 to get -7. Then add the square of -7 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-14x+49=24+49
Square -7.
x^{2}-14x+49=73
Add 24 to 49.
\left(x-7\right)^{2}=73
Factor x^{2}-14x+49. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-7\right)^{2}}=\sqrt{73}
Take the square root of both sides of the equation.
x-7=\sqrt{73} x-7=-\sqrt{73}
Simplify.
x=\sqrt{73}+7 x=7-\sqrt{73}
Add 7 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}