Solve for x
x = \frac{3 \sqrt{33} + 21}{4} \approx 9.558421985
x=\frac{21-3\sqrt{33}}{4}\approx 0.941578015
Graph
Share
Copied to clipboard
2x^{2}-21x+18=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\times 2\times 18}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -21 for b, and 18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-21\right)±\sqrt{441-4\times 2\times 18}}{2\times 2}
Square -21.
x=\frac{-\left(-21\right)±\sqrt{441-8\times 18}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-21\right)±\sqrt{441-144}}{2\times 2}
Multiply -8 times 18.
x=\frac{-\left(-21\right)±\sqrt{297}}{2\times 2}
Add 441 to -144.
x=\frac{-\left(-21\right)±3\sqrt{33}}{2\times 2}
Take the square root of 297.
x=\frac{21±3\sqrt{33}}{2\times 2}
The opposite of -21 is 21.
x=\frac{21±3\sqrt{33}}{4}
Multiply 2 times 2.
x=\frac{3\sqrt{33}+21}{4}
Now solve the equation x=\frac{21±3\sqrt{33}}{4} when ± is plus. Add 21 to 3\sqrt{33}.
x=\frac{21-3\sqrt{33}}{4}
Now solve the equation x=\frac{21±3\sqrt{33}}{4} when ± is minus. Subtract 3\sqrt{33} from 21.
x=\frac{3\sqrt{33}+21}{4} x=\frac{21-3\sqrt{33}}{4}
The equation is now solved.
2x^{2}-21x+18=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}-21x+18-18=-18
Subtract 18 from both sides of the equation.
2x^{2}-21x=-18
Subtracting 18 from itself leaves 0.
\frac{2x^{2}-21x}{2}=-\frac{18}{2}
Divide both sides by 2.
x^{2}-\frac{21}{2}x=-\frac{18}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{21}{2}x=-9
Divide -18 by 2.
x^{2}-\frac{21}{2}x+\left(-\frac{21}{4}\right)^{2}=-9+\left(-\frac{21}{4}\right)^{2}
Divide -\frac{21}{2}, the coefficient of the x term, by 2 to get -\frac{21}{4}. Then add the square of -\frac{21}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{21}{2}x+\frac{441}{16}=-9+\frac{441}{16}
Square -\frac{21}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{21}{2}x+\frac{441}{16}=\frac{297}{16}
Add -9 to \frac{441}{16}.
\left(x-\frac{21}{4}\right)^{2}=\frac{297}{16}
Factor x^{2}-\frac{21}{2}x+\frac{441}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{21}{4}\right)^{2}}=\sqrt{\frac{297}{16}}
Take the square root of both sides of the equation.
x-\frac{21}{4}=\frac{3\sqrt{33}}{4} x-\frac{21}{4}=-\frac{3\sqrt{33}}{4}
Simplify.
x=\frac{3\sqrt{33}+21}{4} x=\frac{21-3\sqrt{33}}{4}
Add \frac{21}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}