Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

2x^{2}-18x+9=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 2\times 9}}{2\times 2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 2\times 9}}{2\times 2}
Square -18.
x=\frac{-\left(-18\right)±\sqrt{324-8\times 9}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-18\right)±\sqrt{324-72}}{2\times 2}
Multiply -8 times 9.
x=\frac{-\left(-18\right)±\sqrt{252}}{2\times 2}
Add 324 to -72.
x=\frac{-\left(-18\right)±6\sqrt{7}}{2\times 2}
Take the square root of 252.
x=\frac{18±6\sqrt{7}}{2\times 2}
The opposite of -18 is 18.
x=\frac{18±6\sqrt{7}}{4}
Multiply 2 times 2.
x=\frac{6\sqrt{7}+18}{4}
Now solve the equation x=\frac{18±6\sqrt{7}}{4} when ± is plus. Add 18 to 6\sqrt{7}.
x=\frac{3\sqrt{7}+9}{2}
Divide 18+6\sqrt{7} by 4.
x=\frac{18-6\sqrt{7}}{4}
Now solve the equation x=\frac{18±6\sqrt{7}}{4} when ± is minus. Subtract 6\sqrt{7} from 18.
x=\frac{9-3\sqrt{7}}{2}
Divide 18-6\sqrt{7} by 4.
2x^{2}-18x+9=2\left(x-\frac{3\sqrt{7}+9}{2}\right)\left(x-\frac{9-3\sqrt{7}}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{9+3\sqrt{7}}{2} for x_{1} and \frac{9-3\sqrt{7}}{2} for x_{2}.