Solve for x (complex solution)
x=4\sqrt{3}+i\approx 6.92820323+i
x=4\sqrt{3}-i\approx 6.92820323-i
Graph
Share
Copied to clipboard
2x^{2}+\left(-16\sqrt{3}\right)x+98=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-16\sqrt{3}\right)±\sqrt{\left(-16\sqrt{3}\right)^{2}-4\times 2\times 98}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -16\sqrt{3} for b, and 98 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-16\sqrt{3}\right)±\sqrt{768-4\times 2\times 98}}{2\times 2}
Square -16\sqrt{3}.
x=\frac{-\left(-16\sqrt{3}\right)±\sqrt{768-8\times 98}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-16\sqrt{3}\right)±\sqrt{768-784}}{2\times 2}
Multiply -8 times 98.
x=\frac{-\left(-16\sqrt{3}\right)±\sqrt{-16}}{2\times 2}
Add 768 to -784.
x=\frac{-\left(-16\sqrt{3}\right)±4i}{2\times 2}
Take the square root of -16.
x=\frac{16\sqrt{3}±4i}{2\times 2}
The opposite of -16\sqrt{3} is 16\sqrt{3}.
x=\frac{16\sqrt{3}±4i}{4}
Multiply 2 times 2.
x=\frac{16\sqrt{3}+4i}{4}
Now solve the equation x=\frac{16\sqrt{3}±4i}{4} when ± is plus. Add 16\sqrt{3} to 4i.
x=4\sqrt{3}+i
Divide 16\sqrt{3}+4i by 4.
x=\frac{16\sqrt{3}-4i}{4}
Now solve the equation x=\frac{16\sqrt{3}±4i}{4} when ± is minus. Subtract 4i from 16\sqrt{3}.
x=4\sqrt{3}-i
Divide 16\sqrt{3}-4i by 4.
x=4\sqrt{3}+i x=4\sqrt{3}-i
The equation is now solved.
2x^{2}+\left(-16\sqrt{3}\right)x+98=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}+\left(-16\sqrt{3}\right)x+98-98=-98
Subtract 98 from both sides of the equation.
2x^{2}+\left(-16\sqrt{3}\right)x=-98
Subtracting 98 from itself leaves 0.
\frac{2x^{2}+\left(-16\sqrt{3}\right)x}{2}=-\frac{98}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{16\sqrt{3}}{2}\right)x=-\frac{98}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+\left(-8\sqrt{3}\right)x=-\frac{98}{2}
Divide -16\sqrt{3} by 2.
x^{2}+\left(-8\sqrt{3}\right)x=-49
Divide -98 by 2.
x^{2}+\left(-8\sqrt{3}\right)x+\left(-4\sqrt{3}\right)^{2}=-49+\left(-4\sqrt{3}\right)^{2}
Divide -8\sqrt{3}, the coefficient of the x term, by 2 to get -4\sqrt{3}. Then add the square of -4\sqrt{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\left(-8\sqrt{3}\right)x+48=-49+48
Square -4\sqrt{3}.
x^{2}+\left(-8\sqrt{3}\right)x+48=-1
Add -49 to 48.
\left(x-4\sqrt{3}\right)^{2}=-1
Factor x^{2}+\left(-8\sqrt{3}\right)x+48. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\sqrt{3}\right)^{2}}=\sqrt{-1}
Take the square root of both sides of the equation.
x-4\sqrt{3}=i x-4\sqrt{3}=-i
Simplify.
x=4\sqrt{3}+i x=4\sqrt{3}-i
Add 4\sqrt{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}