Solve for x (complex solution)
x=\frac{75+25\sqrt{15}i}{2}\approx 37.5+48.412291828i
x=\frac{-25\sqrt{15}i+75}{2}\approx 37.5-48.412291828i
Graph
Share
Copied to clipboard
2x^{2}-150x+7500=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-150\right)±\sqrt{\left(-150\right)^{2}-4\times 2\times 7500}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -150 for b, and 7500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-150\right)±\sqrt{22500-4\times 2\times 7500}}{2\times 2}
Square -150.
x=\frac{-\left(-150\right)±\sqrt{22500-8\times 7500}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-150\right)±\sqrt{22500-60000}}{2\times 2}
Multiply -8 times 7500.
x=\frac{-\left(-150\right)±\sqrt{-37500}}{2\times 2}
Add 22500 to -60000.
x=\frac{-\left(-150\right)±50\sqrt{15}i}{2\times 2}
Take the square root of -37500.
x=\frac{150±50\sqrt{15}i}{2\times 2}
The opposite of -150 is 150.
x=\frac{150±50\sqrt{15}i}{4}
Multiply 2 times 2.
x=\frac{150+50\sqrt{15}i}{4}
Now solve the equation x=\frac{150±50\sqrt{15}i}{4} when ± is plus. Add 150 to 50i\sqrt{15}.
x=\frac{75+25\sqrt{15}i}{2}
Divide 150+50i\sqrt{15} by 4.
x=\frac{-50\sqrt{15}i+150}{4}
Now solve the equation x=\frac{150±50\sqrt{15}i}{4} when ± is minus. Subtract 50i\sqrt{15} from 150.
x=\frac{-25\sqrt{15}i+75}{2}
Divide 150-50i\sqrt{15} by 4.
x=\frac{75+25\sqrt{15}i}{2} x=\frac{-25\sqrt{15}i+75}{2}
The equation is now solved.
2x^{2}-150x+7500=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}-150x+7500-7500=-7500
Subtract 7500 from both sides of the equation.
2x^{2}-150x=-7500
Subtracting 7500 from itself leaves 0.
\frac{2x^{2}-150x}{2}=-\frac{7500}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{150}{2}\right)x=-\frac{7500}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-75x=-\frac{7500}{2}
Divide -150 by 2.
x^{2}-75x=-3750
Divide -7500 by 2.
x^{2}-75x+\left(-\frac{75}{2}\right)^{2}=-3750+\left(-\frac{75}{2}\right)^{2}
Divide -75, the coefficient of the x term, by 2 to get -\frac{75}{2}. Then add the square of -\frac{75}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-75x+\frac{5625}{4}=-3750+\frac{5625}{4}
Square -\frac{75}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-75x+\frac{5625}{4}=-\frac{9375}{4}
Add -3750 to \frac{5625}{4}.
\left(x-\frac{75}{2}\right)^{2}=-\frac{9375}{4}
Factor x^{2}-75x+\frac{5625}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{75}{2}\right)^{2}}=\sqrt{-\frac{9375}{4}}
Take the square root of both sides of the equation.
x-\frac{75}{2}=\frac{25\sqrt{15}i}{2} x-\frac{75}{2}=-\frac{25\sqrt{15}i}{2}
Simplify.
x=\frac{75+25\sqrt{15}i}{2} x=\frac{-25\sqrt{15}i+75}{2}
Add \frac{75}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}