Solve for x
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
x=5
Graph
Share
Copied to clipboard
a+b=-13 ab=2\times 15=30
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 2x^{2}+ax+bx+15. To find a and b, set up a system to be solved.
-1,-30 -2,-15 -3,-10 -5,-6
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 30.
-1-30=-31 -2-15=-17 -3-10=-13 -5-6=-11
Calculate the sum for each pair.
a=-10 b=-3
The solution is the pair that gives sum -13.
\left(2x^{2}-10x\right)+\left(-3x+15\right)
Rewrite 2x^{2}-13x+15 as \left(2x^{2}-10x\right)+\left(-3x+15\right).
2x\left(x-5\right)-3\left(x-5\right)
Factor out 2x in the first and -3 in the second group.
\left(x-5\right)\left(2x-3\right)
Factor out common term x-5 by using distributive property.
x=5 x=\frac{3}{2}
To find equation solutions, solve x-5=0 and 2x-3=0.
2x^{2}-13x+15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 2\times 15}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -13 for b, and 15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-13\right)±\sqrt{169-4\times 2\times 15}}{2\times 2}
Square -13.
x=\frac{-\left(-13\right)±\sqrt{169-8\times 15}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-13\right)±\sqrt{169-120}}{2\times 2}
Multiply -8 times 15.
x=\frac{-\left(-13\right)±\sqrt{49}}{2\times 2}
Add 169 to -120.
x=\frac{-\left(-13\right)±7}{2\times 2}
Take the square root of 49.
x=\frac{13±7}{2\times 2}
The opposite of -13 is 13.
x=\frac{13±7}{4}
Multiply 2 times 2.
x=\frac{20}{4}
Now solve the equation x=\frac{13±7}{4} when ± is plus. Add 13 to 7.
x=5
Divide 20 by 4.
x=\frac{6}{4}
Now solve the equation x=\frac{13±7}{4} when ± is minus. Subtract 7 from 13.
x=\frac{3}{2}
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
x=5 x=\frac{3}{2}
The equation is now solved.
2x^{2}-13x+15=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}-13x+15-15=-15
Subtract 15 from both sides of the equation.
2x^{2}-13x=-15
Subtracting 15 from itself leaves 0.
\frac{2x^{2}-13x}{2}=-\frac{15}{2}
Divide both sides by 2.
x^{2}-\frac{13}{2}x=-\frac{15}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-\frac{13}{2}x+\left(-\frac{13}{4}\right)^{2}=-\frac{15}{2}+\left(-\frac{13}{4}\right)^{2}
Divide -\frac{13}{2}, the coefficient of the x term, by 2 to get -\frac{13}{4}. Then add the square of -\frac{13}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{13}{2}x+\frac{169}{16}=-\frac{15}{2}+\frac{169}{16}
Square -\frac{13}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{13}{2}x+\frac{169}{16}=\frac{49}{16}
Add -\frac{15}{2} to \frac{169}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{13}{4}\right)^{2}=\frac{49}{16}
Factor x^{2}-\frac{13}{2}x+\frac{169}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Take the square root of both sides of the equation.
x-\frac{13}{4}=\frac{7}{4} x-\frac{13}{4}=-\frac{7}{4}
Simplify.
x=5 x=\frac{3}{2}
Add \frac{13}{4} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}