Solve for x
x=\frac{\sqrt{22}}{2}+3\approx 5.34520788
x=-\frac{\sqrt{22}}{2}+3\approx 0.65479212
Graph
Share
Copied to clipboard
2x^{2}-12x+7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 2\times 7}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -12 for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 2\times 7}}{2\times 2}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-8\times 7}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-12\right)±\sqrt{144-56}}{2\times 2}
Multiply -8 times 7.
x=\frac{-\left(-12\right)±\sqrt{88}}{2\times 2}
Add 144 to -56.
x=\frac{-\left(-12\right)±2\sqrt{22}}{2\times 2}
Take the square root of 88.
x=\frac{12±2\sqrt{22}}{2\times 2}
The opposite of -12 is 12.
x=\frac{12±2\sqrt{22}}{4}
Multiply 2 times 2.
x=\frac{2\sqrt{22}+12}{4}
Now solve the equation x=\frac{12±2\sqrt{22}}{4} when ± is plus. Add 12 to 2\sqrt{22}.
x=\frac{\sqrt{22}}{2}+3
Divide 12+2\sqrt{22} by 4.
x=\frac{12-2\sqrt{22}}{4}
Now solve the equation x=\frac{12±2\sqrt{22}}{4} when ± is minus. Subtract 2\sqrt{22} from 12.
x=-\frac{\sqrt{22}}{2}+3
Divide 12-2\sqrt{22} by 4.
x=\frac{\sqrt{22}}{2}+3 x=-\frac{\sqrt{22}}{2}+3
The equation is now solved.
2x^{2}-12x+7=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
2x^{2}-12x+7-7=-7
Subtract 7 from both sides of the equation.
2x^{2}-12x=-7
Subtracting 7 from itself leaves 0.
\frac{2x^{2}-12x}{2}=-\frac{7}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{12}{2}\right)x=-\frac{7}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-6x=-\frac{7}{2}
Divide -12 by 2.
x^{2}-6x+\left(-3\right)^{2}=-\frac{7}{2}+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=-\frac{7}{2}+9
Square -3.
x^{2}-6x+9=\frac{11}{2}
Add -\frac{7}{2} to 9.
\left(x-3\right)^{2}=\frac{11}{2}
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{\frac{11}{2}}
Take the square root of both sides of the equation.
x-3=\frac{\sqrt{22}}{2} x-3=-\frac{\sqrt{22}}{2}
Simplify.
x=\frac{\sqrt{22}}{2}+3 x=-\frac{\sqrt{22}}{2}+3
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}